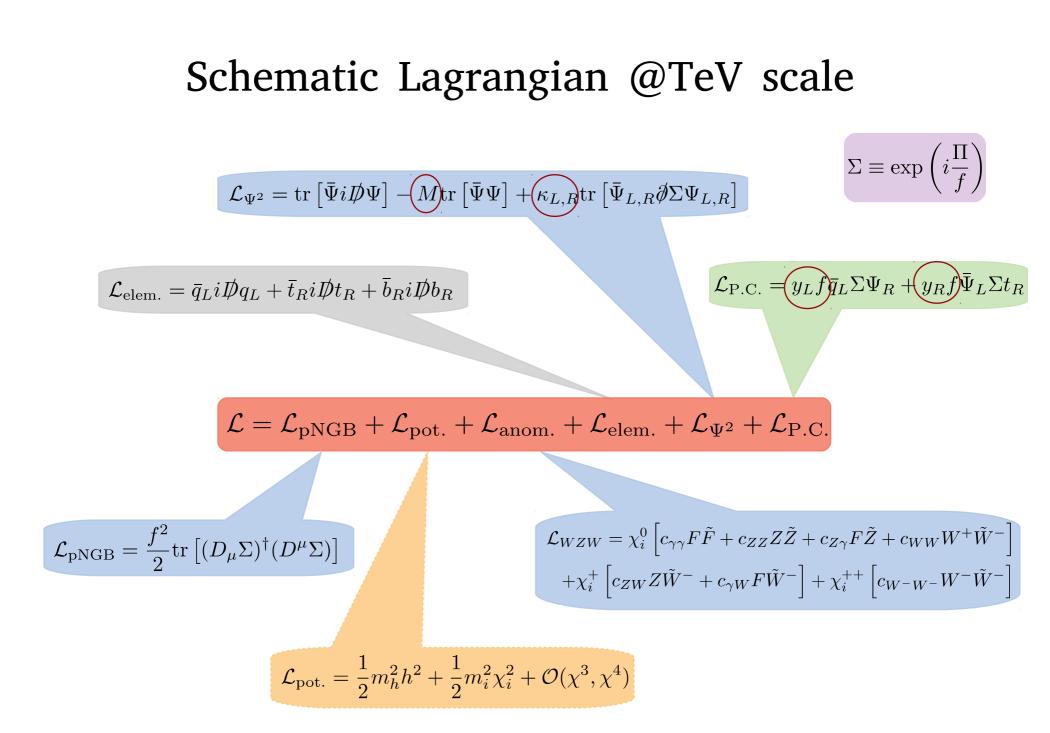
A reappraisal of top-partner hunting

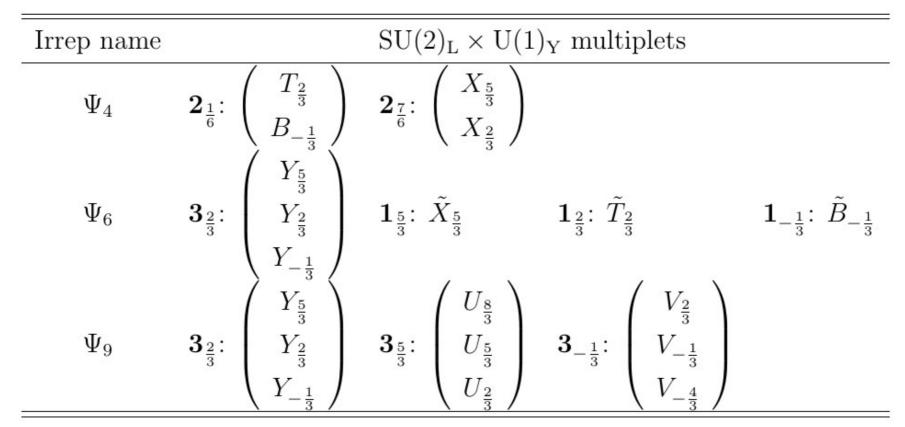
Avik Banerjee

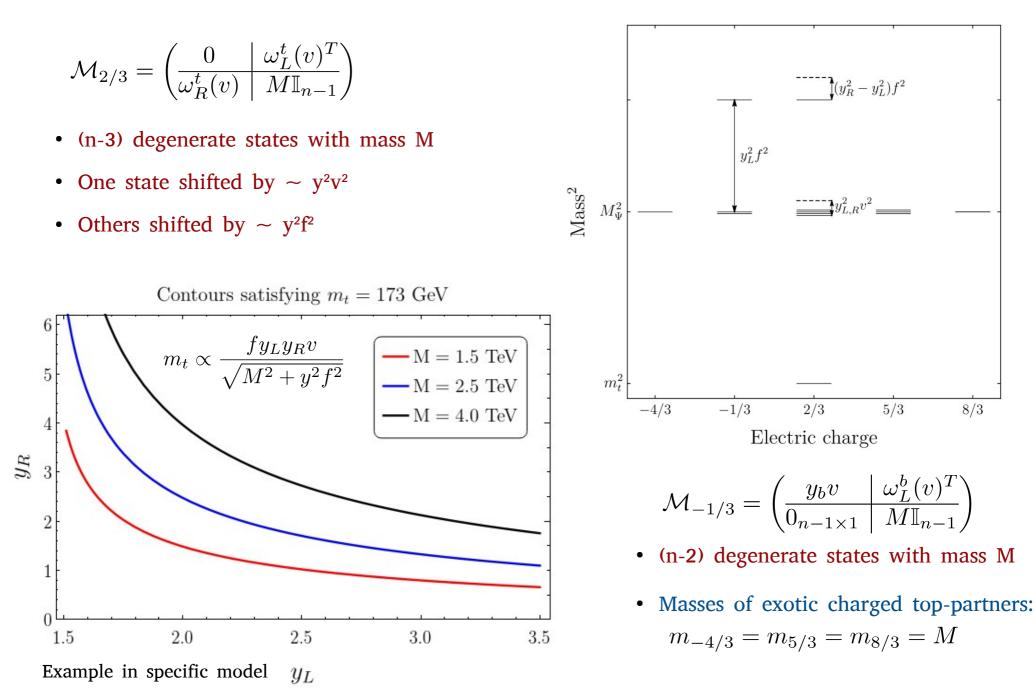

Coauthors: Diogo B. Franzosi and Gabriele Ferretti Chalmers Univ. Of Technology, Gothenburg

Partikeldagarna, 2021

22.11.2021

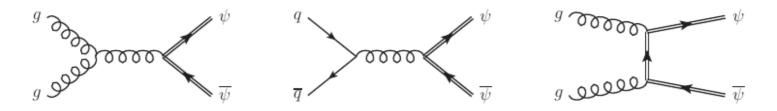
Motivations


- Composite Higgs models: non-SUSY solutions to Hierarchy problem
- pNGB Higgs boson + top quark mass by partial compositeness
- Partial compositeness framework predicts vector-like quarks (top-partners).
- Several ongoing searches for VLQs at LHC and more proposals to come
- Popular approach: use simplified models (with unknown couplings)
- Our objective:
 - Bridge the gap between simplified models and more concrete scenarios of partial compositeness (reduction of parameters)
 - Formulate a TeV scale Lagrangian
 - Look for universal features which are independent of specific UV realizations
- Formulate a strategy for top-partner search at LHC:
 - Find interesting channels to search top-partners at LHC
 - Tackle the theoretical challenges
 - Provide benchmark for prospective search topologies


Examples: pNGBs and top-partners

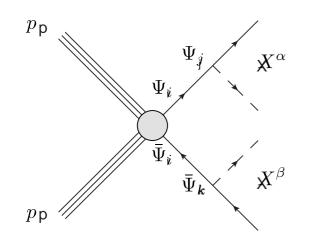
$$\begin{split} \frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} & \mathbf{5} \to (\mathbf{2},\mathbf{2}) + (\mathbf{1},\mathbf{1}) \to \mathbf{2}_{\pm 1/2} + \mathbf{1}_0 \equiv (H,\eta) & \text{SHIFT Collab:}[1907.05929] \\ \\ \frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} & \mathbf{14} \to (\mathbf{3},\mathbf{3}) + (\mathbf{2},\mathbf{2}) + (\mathbf{1},\mathbf{1}) \to \mathbf{3}_0 + \mathbf{3}_{\pm 1} + \mathbf{2}_{\pm 1/2} + \mathbf{1}_0 \equiv (\Phi_0,\Phi_\pm,H,\eta) \end{split}$$

• Top-partners: consider lowest dimensional representations



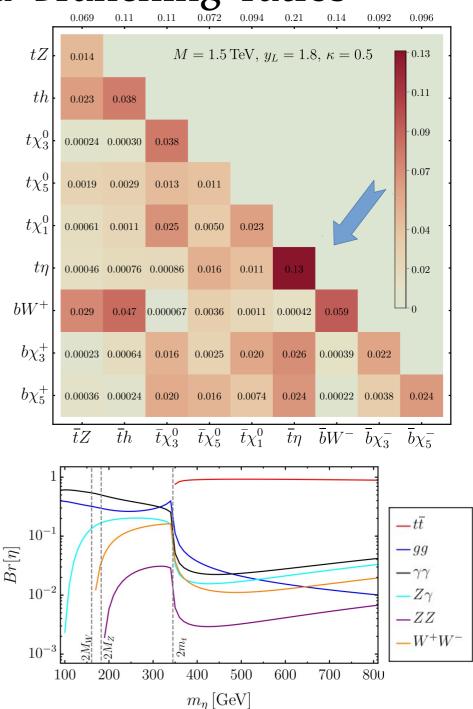
Generic mass-matrix and spectra

Phenomenology of top-partners


• Double production of top-partners at LHC: Model independent

• Decays of top-partners:

Top-partner	Decays to SM		Decays to BSM final states						LO with			
	final states	$rac{\mathrm{SU}(4)}{\mathrm{Sp}(4)}$	$rac{\mathrm{SU}(5)}{\mathrm{SO}(5)}$		13	And Street Street Street		F	PDF MSTV	v 2008nnio	58	
$T_{\frac{2}{3}}$	th, tZ	$t\eta$	$t\chi_{3}^{0},t\chi_{5}^{0},t\chi_{1}^{0},t\eta$	[dd]								
0	bW^+		$b\chi_3^+,b\chi_5^+$	[qd] (<u>小</u> 小	ſ							1
$B_{-\frac{1}{3}}$	bh, bZ	$b\eta$	$b\chi_{3}^{0},b\chi_{5}^{0},b\chi_{1}^{0},b\eta$	- ⊅ - ^						147	7.17	
0	tW^-		$t\chi_3^-,t\chi_5^-$	$\frac{1}{dd}$ 10 ⁻⁶	ŀ			1	$3\mathrm{TeV}$		lev	-
$\overline{X_{rac{5}{3}}}$	tW^+	_	$t\chi_3^+, t\chi_5^+$	$\sigma(l)$								
0			$b\chi_5^{++}$									
$X_{-\frac{4}{3}}$	tW^-W^-	_	$t\chi_5^{}$	10-9	<u> </u>							
	bW^-		$b\chi_3^-,b\chi_5^-$		0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$X_{\frac{8}{3}}$	tW^+W^+	_	$t\chi_5^{++}$	-				M_{Ψ}	[TeV]			


Degenerate states and branching ratios

- Theoretical Challenges:
- Deal with the degenerate states
- One-loop self energy is off-diagonal
- Consider matrix Breit-Wigner propagators
- Large width (10%-20%)

 $\sigma(pp \to \Psi \bar{\Psi} \to X^{\alpha} X^{\beta}) \stackrel{\text{NWA}}{=} N_{\Psi} \sigma(pp \to \Psi \bar{\Psi}) \mathcal{BR}_2(\Psi \bar{\Psi} \to X^{\alpha} X^{\beta})$

 $\mathcal{BR}_2(\Psi\bar{\Psi} \to X^{\alpha}X^{\beta}) \neq \mathcal{BR}(\Psi \to X^{\alpha})\mathcal{BR}(\bar{\Psi} \to X^{\beta})$

Summary

- Aim: bridging the gap between simplified models and concrete models of partial compositeness
- Lots of generic features in the top-partner sector (Ex: mass matrix, spectra)
- Specific models may lead to interesting non-standard search topologies
- Technical challenges involve dealing with nearly degenerate states, large width
- Trying to find a best case scenario for diphoton signal in composite Higgs models

will appear on arXiv soon...

Thank you!