Heavy quark momentum diffusion coefficient during the hydrodynamization in heavy-ion collisions

Jarkko Peuron(Lund University) In collaboration with: T. Lappi (University of Jyväskylä) A. Kurkela (University of Stavanger) K. Boguslavski (Vienna University of Technology)

November 22nd 2021

Work in progress

Ultrarelativistic heavy ion collisions & heavy quarks, why?

Figure: Fig: Chun Shen

- Short formation time & no pair production/annihilation \rightarrow entire history of the medium
- \blacksquare Assume $M \gg T$, Q.

First principle description of URHIC from QCD?

Observation:

Emergence of hydrodynamics after $\tau \sim 1$ fm/ $c \rightarrow$ approx. local equilibrium, how?

Figure: Fig: E. Iancu, arXiv:1105.0751 [hep-ph]. Solution (?): $Q_s = \alpha_s N_c \frac{1}{\pi E}$ *πR^A* d*N* $\frac{d}{dy}$, at high energy $\overrightarrow{Q_s} \gg$ $\Lambda_{QCD} \rightarrow \alpha_s(Q_s) \ll 1$ d*N* $\frac{dV}{dy}$ ∼ 1/α_{*s*} \gg 1 Large occupation number \rightarrow classical field $(gA = const, g \rightarrow 0).$

■ Later stage \rightarrow gas of partons described by kinetic theory which equilibrates.

Descriptions of pre-equilibrium: Classical fields & EKT

Glassical description, CYM (applicability: $f \gg 1$ Initially: *A* ∼ $1/g$

$$
[D^{\mu}, F^{\mu\nu}] = 0 \tag{1}
$$

EKT: Boltzman equation (applicability: $f \ll 1/g^2$)

$$
-\frac{\mathrm{d}f}{\mathrm{d}\tau} + \frac{p_z}{\tau}\partial_{p_z}f = C_{1 \leftrightarrow 2}[f] + C_{2 \leftrightarrow 2}[f] \tag{2}
$$

- \blacksquare Overlapping range of validity when $1/\alpha_s \gg f \gg 1$.
- Collision terms *C* involve matrix elements describing scattering processes among quarks and gluons. Computed in thermal field theory.
- **This talk: effective kinetic theory description. For heavy quarks** in classical setup, see: JHEP 09 (2020) 077.

Isotropization in the kinetic theory stage: "Bottom-up"

Figure: Kurkela & Zhu, Phys.Rev.Lett. 115 (2015) 18, 182301

Isotropization in 3 stages:

- Stage 1: competition of momentum diffusion and expansion, expansion wins \rightarrow anisotropy grows.
- Stage 2: Soft thermal bath starts to form, momentum diffusion and expansion roughly equal \rightarrow constant anisotropy.
- Stage 3: Soft thermal bath formed, energy cascades from hard particles to the thermal bath.

Originally proposed in: Baier et. al. PLB 502 (2001) 51-58.

Extracting the diffusion coefficient (PRC 71 (2005) 064904)

In the kinetic theory framework κ is given by $(gq \rightarrow gq, t$ -channel gluon exchange)

$$
\kappa = \frac{\langle \Delta k^2 \rangle}{\Delta t} = \frac{1}{6M} \int \frac{d^3k d^3q}{(2\pi)^6 8|k||k+q|M} 2\pi \delta(|k+q|-|k|)
$$

$$
\times q^2 |\mathcal{M}|^2_{\text{gluon}} f(k)(1+f(|k+q|)) \tag{3}
$$

 k and k' gluon momenta, $q = k - k'$, p and p' incoming and outgoing heavy quark momenta.

$$
|\mathcal{M}|_{\text{gluon}}^2 = \left[N_c C_H g^4 \right] \frac{16M^2 k^2 \left(1 + \cos^2 \theta_{kk'} \right)}{(q^2 + m_D^2)^2} \tag{4}
$$

Jarkko Peuron [Heavy quark momentum diffusion coefficient during the hydrodynamization in heavy-ion collisions](#page-0-0) 6 / 9

Pressure isotropization

■ System is fairly isotropic at
$$
t \approx \tau_R
$$

■ $\tau_R = \frac{4\pi \eta/s(\lambda)}{T}$

Diffusion coefficient: approach to thermal

Jarkko Peuron [Heavy quark momentum diffusion coefficient during the hydrodynamization in heavy-ion collisions](#page-0-0) 8 / 9

We have:

κ during bottom-up isotropization (EKT): no large deviations from thermal. Best match achieved when compare these with the same IR temperature.

Future plans:

- **Precision comparison of EKT and CYM?**
- Possibly other transport coefficients such as \hat{q} using CYM/EKT.

Isotropization of heavy quarks: how to compare to thermal?

E Comparison not unambiguous! Same ϵ , m_D , T ? *T* as an integral moment of particle distribution:

$$
T_* = \frac{2\lambda \int \frac{d^3 p}{(2\pi)^3} f(p)(1+f(p))}{m_D^2},
$$
 (5)

Discretization effects: $\epsilon \sim \int d^3p p f(p) \rightarrow \int_{p_{\text{min}}}^{\infty} d^3p p f(p)$

Jarkko Peuron [Heavy quark momentum diffusion coefficient during the hydrodynamization in heavy-ion collisions](#page-0-0) 1 / 0