

Simplifying calculations with chirality flow

PARTIKELDAGARNA 2021 - MALIN SJÖDAHL BASED ON HEP-PH:2003.05877 (EPJC) AND HEP-PH:2011.10075 (EPJC) IN COLLABORATION WITH JOAKIM ALNEFJORD, ANDREW LIFSON AND CHRISTIAN REUSCHLE

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

QED QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

Introduction

Motivation

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

- QED QED Examples
- QCD

Massive chirality flow

Building Blocks Examples

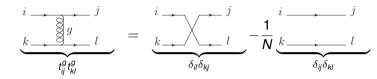
Conclusion an outlook

- Question: Calculations in QCD color space, su(N), N = 3, can be elegantly simplified using a flow picture for color, can we do the same for the Lorentz structure $\sim \underbrace{su(2)}_{\text{left}}, \underbrace{su(2)}_{\text{right}}$?
- For color one can formulate color-flow Feynman rules, can we similarly formulate some chirality-flow Feynman rules?
- Answer: YES!
- Feynman rules can be rewritten in terms of chirality flows and this beautifully simplifies calculations!

Builds on hep-ph:2003.05877 and hep-ph:2011.10075, both published in EPJC

In QCD we translate color structures to flows of color

SU(N) Fierz identity: remove adjoint indices ($T_R = 1$)



Remove gluon vertices similarly

UNIVERSITY

In the end every amplitude is a linear combination of products of δs

Idea:

Try to remove Lorentz indices in analogy with removing gluon indices, with the goal of recasting all Feynman rules to chirality-flow rules Malin Sjödahl (Lund)

The chirality-flow formalism

The analogy with color, su(N)

Lorentz structure, two copies of

Massless chirality flow

Can we do something similar for spacetime?

Introduction

The analogy with color, su(N

Lorentz structure, two copies of su(2)

Spinor-helicity formalism

Massless chirality flow

QED

QED Exan

QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

- At the (complexified) algebra level, the Lorentz group consists of two copies of su(2), so(3, 1) ≃ su(2) ⊕ su(2)
- The Dirac spinor structure transforms under the direct sum representation $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ in the chiral/Weyl basis

$$\begin{pmatrix} u_L \\ u_R \end{pmatrix} \to \begin{pmatrix} e^{-i\bar{\theta}\cdot\frac{\bar{\sigma}}{2}+\bar{\eta}\cdot\frac{\bar{\sigma}}{2}} & 0 \\ 0 & e^{-i\bar{\theta}\cdot\frac{\bar{\sigma}}{2}-\bar{\eta}\cdot\frac{\bar{\sigma}}{2}} \end{pmatrix} \begin{pmatrix} u_L \\ u_R \end{pmatrix}$$

i.e. actually two copies of $\textbf{SL(2,}\mathbb{C}\textbf{)},$ generated by the complexified su(2) algebra

left

right

Spinor-helicity: its building blocks

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2)

Spinor-helicity formalism

Massless chirality flow

QED QED Examp

QCD

Massive chirality flow

Building Blocks Examples

Conclusion ar outlook

Consider massless particles: chirality \sim helicity Spinors

$$u^+(p) = v^-(p) = egin{pmatrix} 0 \ |p
angle \end{pmatrix} \qquad u^-(p) = v^+(p) = egin{pmatrix} |p| \ 0 \end{pmatrix} \ ar u^+(p) = ar v^-(p) = ig([p|\,,\ 0ig) & ar u^-(p) = ar v^+(p) = ig(0\,,\ \langle p|ig) \end{pmatrix}$$

Polarization vectors

$$\epsilon_{L}^{\mu}(p,r) \rightarrow \frac{|r\rangle[p|}{\langle rp \rangle} \text{ or } \frac{|p]\langle r|}{\langle rp \rangle}, \qquad \epsilon_{R}^{\mu}(p,r) \rightarrow \frac{|r]\langle p|}{[pr]} \text{ or } \frac{|p\rangle[r|}{[pr]}$$

where ϵ_L is for incoming negative helicity or outgoing positive helicity and ϵ_R is for incoming positive helicity or outgoing negative helicity

Malin Sjödahl (Lund)

The chirality-flow formalism

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

QED QED Example

Massive chirality flow

Building Blocks Examples

Conclusion an outlook

Amplitudes built up from Lorentz invariant inner products

Lorentz inner products formed using the only SL(2, \mathbb{C}) invariant object $\epsilon^{\alpha\beta}$, $\epsilon^{12} = -\epsilon^{21} = \epsilon_{21} = -\epsilon_{12}$

$$\underbrace{\epsilon^{\alpha\beta}|i\rangle_{\beta}}_{\equiv\langle i|^{\alpha}}|j\rangle_{\alpha} = \langle i|^{\alpha}|j\rangle_{\alpha} = \langle ij\rangle, \quad \underbrace{\epsilon_{\dot{\alpha}\dot{\beta}}|i]^{\dot{\beta}}}_{\equiv[i]_{\dot{\alpha}}}|j]^{\dot{\alpha}} = [i|_{\dot{\alpha}}|j]^{\dot{\alpha}} = [ij],$$

Amplitudes are built up of contractions of form $\langle ij \rangle, [ij] \sim \sqrt{s_{ij}}$

If we manage to create a flow picture, the "flow" must contract dotted and undotted indices separately

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

QED QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

Massless chirality flow

Towards chirality flow: Photon exchange

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2)

Massless chirality flow

- QED
- QED Example QCD

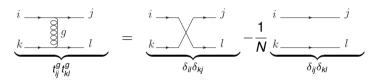
Massive chirality flow

Building Blocks Examples

Conclusion an outlook

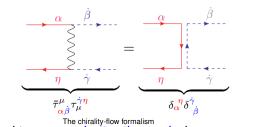
Malin Sjödahl (Lund)

Recall color, a single SU(N): generators $t^a \rightarrow \delta$'s



For Lorentz structure $\gamma^{\mu} = \sqrt{2} \begin{pmatrix} 0 & \tau^{\mu} \\ \overline{\tau}^{\mu} & 0 \end{pmatrix}$ in vertices, split in two terms and

use spinor Fierz in flow form is (always read indices along arrow):



November 22nd 2021 9/25

Towards chirality flow: Fermion propagators

Introduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow QED

QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion ar outlook

Momentum dot defined to represent slashed momentaFor massless momenta we have

$$\sqrt{2} oldsymbol{
ho}^{\mu} au_{\mu} \equiv oldsymbol{
ho} = |oldsymbol{
ho}| \ , \quad \sqrt{2} oldsymbol{
ho}^{\mu} ar{ au}_{\mu} \equiv oldsymbol{ar{
ho}} = |oldsymbol{
ho}
angle [oldsymbol{
ho}]$$

• In a propagator, we have $p^{\mu} = \sum p_i^{\mu}$, $p_i^2 = 0$

$$p = \sum_{i}^{\sum_{i} p_{i}} = \sum_{i} |i|^{\dot{\alpha}} \langle i|^{\beta} \text{ for } p_{i}^{2} = 0$$

$$\bar{p} = \sum_{i}^{\sum_{i} p_{i}} = \sum_{i} |i\rangle_{\alpha}[i|_{\dot{\beta}} \text{ for } p_{i}^{2} = 0$$

Malin Sjödahl (Lund)

ntroduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow

QED

QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion an outlook

Towards chirality flow: external gauge bosons

In the spinor-helicity formalism

$$\epsilon_{L}^{\mu}(p,r) \rightarrow \frac{|r\rangle[p|}{\langle rp \rangle} \text{ or } \frac{|p]\langle r|}{\langle rp \rangle}, \qquad \epsilon_{R}^{\mu}(p,r) \rightarrow \frac{|r]\langle p|}{[pr]} \text{ or } \frac{|p\rangle[r|}{[pr]}$$

 \implies easy to translate to chirality flow

In Feynman diagram choose arrow direction which gives aligned arrows

After careful consideration we conclude that this flow picture works always works

Malin Sjödahl (Lund)

The chirality-flow formalism

The QED flow rules: outgoing particles

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2)

Spinor-helicity formalism

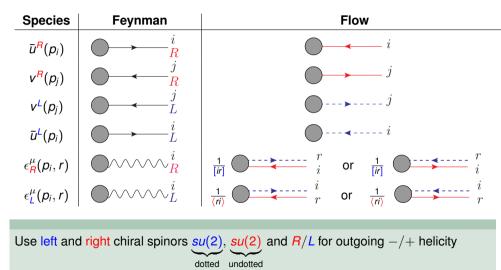
Massless chirality flow QED

QED Example: QCD

Massive chirality flow

Building Blocks Examples

Conclusion an outlook



Malin Sjödahl (Lund)

The chirality-flow formalism

The QED flow rules: vertices and propagators

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

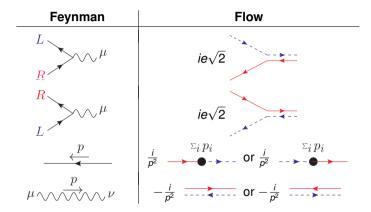
QED

QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion an outlook



Stitch together such that arrow direction match

Malin Sjödahl (Lund)

The chirality-flow formalism

November 22nd 2021 13/25

Simplest QED example, all particles outgoing

Regular spinor-helicity = easy

ntroduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow

- QED
- QED Examples
- QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

$=\frac{2ie^{2}}{s_{e^{+}e^{-}}}([2|_{\dot{\alpha}}\tau_{\mu}^{\dot{\alpha}\beta}|1\rangle_{\beta})(\langle 4|^{\alpha}\bar{\tau}_{\alpha\dot{\beta}}^{\mu}|3]^{\dot{\beta}})$ $=\frac{2ie^{2}}{s_{e^{+}e^{-}}}[2|_{\dot{\alpha}}|3]^{\dot{\alpha}}\langle 4|^{\beta}|1\rangle_{\beta}\equiv\frac{2ie^{2}}{s_{e^{+}e^{-}}}[23]\langle 41\rangle$

Chirality flow = super easy and intuitive

Simplest QED example, all particles outgoing

Regular spinor-helicity = easy

ntroduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow

- QED
- QED Examples
- QCD

Massive chirality flow

Building Blocks Examples

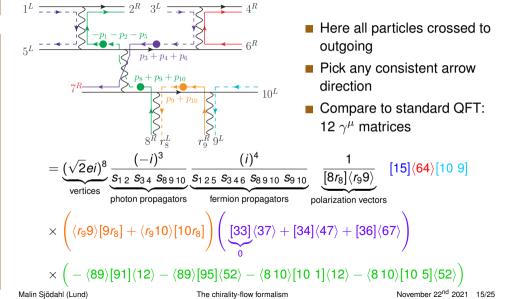
Conclusion and outlook

$=\frac{2ie^{2}}{s_{e^{+}e^{-}}}([2|_{\dot{\alpha}}\tau_{\mu}^{\dot{\alpha}\beta}|1\rangle_{\beta})(\langle 4|^{\alpha}\bar{\tau}_{\alpha\dot{\beta}}^{\mu}|3]^{\dot{\beta}})$ $=\frac{2ie^{2}}{s_{e^{+}e^{-}}}[2|_{\dot{\alpha}}|3]^{\dot{\alpha}}\langle 4|^{\beta}|1\rangle_{\beta}\equiv\frac{2ie^{2}}{s_{e^{+}e^{-}}}[23]\langle 41\rangle$

Chirality flow = super easy and intuitive $\begin{array}{c}
2e^{-}\\
L \\
1e^{+}\\
R \\
\end{array}$ $\begin{array}{c}
\mu^{+}_{3}\\
\mu^{-}_{4}\\
\end{array}$ $= \frac{2ie^{2}}{s_{e^{+}e^{-}}} \underbrace{2e^{-}}_{1e^{+}e^{-}} \underbrace{2e^{-$

Malin Sjödahl (Lund)

A complicated QED example



ntroduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Sninor-helicity formalism

Massless chirality flow

QED

QED Examples

QCD

Massive chirality flow

Building Blocks

Conclusion an outlook

The non-abelian massless QCD flow vertices

Introduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

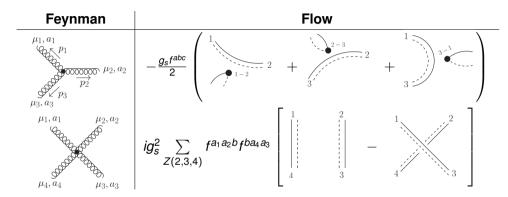
Massless chirality flow

- QED QED Examp
- QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook



Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$

Malin Sjödahl (Lund)

The chirality-flow formalism

November 22nd 2021 16/25

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

QED QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

Massive chirality flow

Massive spinor helicity basics

- Introduction
- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow

- QED
- QED Example
- QCD

Massive chirality flow

Building Blocks Examples

Conclusion a outlook

Massive spinors and polarization vectors written in terms of massless Weyl

spinors of momentum p^{\flat} , q, $u^+(p) = \begin{pmatrix} -\frac{m}{[qp^{\flat}]} & \cdots & q \\ & & & p^{\flat} \end{pmatrix}$, etc.

Decompose massive momentum *p* as sum of massless ones $p^{\mu} = p^{\flat,\mu} + \alpha q^{\mu}$, $(p^{\flat})^2 = q^2 = 0$, $\alpha = \frac{p^2}{2p \cdot q}$ $p \equiv \sqrt{2}p^{\mu}\tau_{\mu} = |p^{\flat}]\langle p^{\flat}| + \alpha |q]\langle q|$

q is arbitrary but physical, as defines spin direction s^{μ}

$$s^{\mu}=rac{1}{m}(p^{lat,\mu}-lpha q^{\mu})=rac{1}{m}(p^{\mu}-2lpha q^{\mu})$$

■ $p^{\mu} = p_{f}^{\mu} + p_{b}^{\mu}$, $\alpha \to 1$, $p^{\flat} \to p_{f} = \frac{p^{0} + |\vec{p}|}{2}(1, \hat{p})$, $q \to p_{b} = \frac{p^{0} - |\vec{p}|}{2}(1, -\hat{p})$ Spin measured along $s^{\mu} = \frac{1}{m}(p_{f}^{\mu} - p_{b}^{\mu}) = \frac{1}{m}(|\vec{p}|, p^{0}\hat{p}) \equiv \text{direction of motion!}$ See e.g. hep-ph:0510157 for more details

Malin Sjödahl (Lund)

The chirality-flow formalism

Fermion vertices

Fermion-vector vertex

Fermion-scalar vertex

Spinor-helicity formalism

Massless chirality flow

- QED
- QED Exampl
- QCD

Massive chirality flow

Building Blocks Examples

Conclusion an outlook

Left and right chiral couplings may differ, in particular $C_R = 0$ for W^{\pm} \Rightarrow electroweak sector nice in chirality flow

Malin Sjödahl (Lund)

The chirality-flow formalism

 $\rangle \cdots \rangle^{\mu} = ie(P_L C_L + P_R C_R) \gamma^{\mu} = ie\sqrt{2} \begin{pmatrix} 0 & C_R \\ C_L & 0 \end{pmatrix}$

 $-- = ie(P_L C_L + P_R C_R) = ie\begin{pmatrix} C_L & 0 \\ & & \\ 0 & C_R \end{pmatrix}$

Fermion propagator

Fermion propagator

Propagators and vertices don't always contribute factor $\tau/\bar{\tau}$ \Rightarrow may have even number of $\tau/\bar{\tau}$ -matrices

Have to update arrow swap procedure to include even number of $\tau/\bar{\tau}$

$$\begin{aligned} \langle i | \bar{\tau}^{\mu_1} \tau^{\mu_2} \dots \bar{\tau}^{\mu_{2n+1}} | j] &= [j | \tau^{\mu_{2n+1}} \bar{\tau}^{\mu_{2n}} \dots \tau^{\mu_1} | j \rangle \\ \langle i | \bar{\tau}^{\mu_1} \tau^{\mu_2} \dots \tau^{\mu_{2n}} | j \rangle &= -\langle j | \bar{\tau}^{\mu_{2n}} \bar{\tau}^{\mu_{2n-1}} \dots \tau^{\mu_1} | i \rangle \\ [i | \tau^{\mu_1} \bar{\tau}^{\mu_2} \dots \bar{\tau}^{\mu_{2n}} | j] &= -[j | \tau^{\mu_{2n}} \bar{\tau}^{\mu_{2n-1}} \dots \bar{\tau}^{\mu_1} | i] \end{aligned}$$

Arrow flips may induce minus signs! Care must be taken

Malin Sjödahl (Lund)

The chirality-flow formalism

UNIVERSITY

Lorentz structure, two copies of

Massless chirality flow

Building Blocks

Conclusion and outlook

A massive example

Introduction

- The analogy with color, su(N) Lorentz structure, two copies of su(2)
- Spinor-helicity formalism

Massless chirality flow

- QED
- QED Example
- QCD

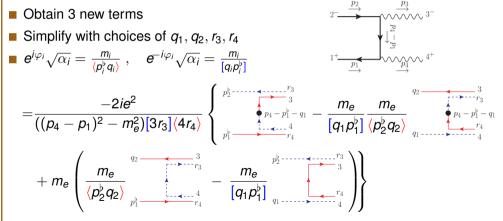
Massive chirality flow

Building Blocks

Examples

Conclusion and outlook

Consider the diagram of $e_1^+e_2^- o \gamma_3^+\gamma_4^-$ and include the mass m_e



Malin Sjödahl (Lund)

The chirality-flow formalism

Towards an implementation

ntroduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

- QED
- QED Examples
- QCD

Massive chirality flow

Building Blocks

Examples

Conclusion and outlook

- Clearly much superior for pen and paper calculations
- What about implementation?
 - Each contribution free of matrix structure, only sum of products of spinor inner products
 - Natural to sum only over contributing helicities, most particles are effectively massless
 - Only some Feynman diagrams contribute to given helicity assignment, for fermions (n_{in,L} + n_{in,R})! → n_{in,L}!n_{in,R}!
 - Assignment of the same reference momentum for massless gauge bosons removes many terms (1/2 of terms survive 3g vertex, 1/4 survives 4g vertex for external gluons and random polarizations)
- Currently implementing in MadGraph (Zenny Wettersten's master thesis, in collaboration with Andrew Lifson, Oliver Mattelaer (Louvain La Neuve))

Application to resummation

ntroduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

- QED QED Examples
- QCD

Massive chirality flow

- Examples
- Conclusion an outlook

- For color, resummation can be done in a color-flow basis
- Similarly here use chirality-flow we obtain a limited set of Lorentz structures
- Gain full control over analytic structure of resummation
- In collaboration with Simon Plätzer (Vienna and Graz)

... and beyond leading order

- Division in left and right chiral spinors is a four-dimensional construction
- ... but loops are calculated in $4 2\epsilon$ dimensions
- Need to consistently treat spinors in $4 2\epsilon$ dimension, solve Weyl eq. in $4 2\epsilon$ dimensions, treat spin sums and inner products...
- Worked out with Andrew Lifson and Simon Plätzer (Vienna and Graz)

Introduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

QED QED Examples QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

Conclusion and outlook

Conclusion and outlook

ntroduction

The analogy with color, su(N) Lorentz structure, two copies of su(2) Spinor-helicity formalism

Massless chirality flow

- QED QED Examp
- QCD

Massive chirality flow

Building Blocks Examples

Conclusion and outlook

- Splitting Lorentz structure into su(2), su(2), we have been able to recast all standard model Feynman rules to chirality-flow rules
- The chirality-flow formalism gives a transparent and intuitive way of understanding the Lorentz inner products appearing in amplitudes
 - Spinor-helicity formalism: 4 imes 4 matrices γ^{μ} ightarrow to 2 imes 2 matrices σ^{μ}
 - Chirality-flow method: 2×2 matrices $\sigma^{\mu} \rightarrow$ scalars
- Shorter calculation of Feynman diagrams
 - Many processes within range of quick pen and paper calculations, often no intermediate steps
 - Final result transparent/intuitive
- Implementing in MadGraph
- Resummation paper close to ready, and loops on their way