

Implications of the Lack of Sharp Spectral Features in the Local Cosmic-Ray Positron Flux

Isabelle John isabelle.john@fysik.su.se

November 23, 2021 Partikeldagarna 2021

Local Cosmic-Ray Positron Flux

- AMS-02 provides extremely precise cosmic-ray data
- Rising positron flux above 20 GeV: contribution from pulsars favoured over dark matter
- Spectrum is very smooth

Contributions to the Local CR Positron Flux

In this work:

- 1. Dark matter: sharp spectral features from annihilating dark matter into leptonic final states
- 2. Pulsars: sharp spectral features in positron spectrum

Isabelle John

Partikeldagarna 2021

- 1. Create background model for secondary positrons and primary positrons (pulsars) using the GALPROP code
 - Large set of free parameters, e.g. diffusion spectrum, particle injection spectra

- 2. Add contribution from dark matter annihilating into four leptonic final states:
 - $\chi\chi \to \tau^+\tau^-$
 - $\chi\chi \to \mu^+\mu^-$
 - $\chi\chi \rightarrow e^+e^-$
 - $\chi\chi \rightarrow \phi\phi \rightarrow e^+e^-e^+e^-$, where ϕ is a light mediator

3. Re-fit model with relevant model parameters

 Compute constraints on the DM annihilation cross section for DM masses between 5-2000 GeV

- Background model fits AMS-02 data to within a few percent ($\chi^2/dof = 0.88$)
- Derive strong constraints, 95% upper CL

• At small masses (\sim 30 GeV), constraints significantly below the thermal cross section ($\sim 2.5 \times 10^{-28} \text{ cm}^3/\text{s}$) for annihilations into e^+e^- rule out even subdominant dark matter contributions

• Improvement on previous limits by Bergström et. al (2013) by a factor of ≈ 2

Sharp Spectral Features in the CR Positron Flux

 Sharp spectral features from annihilating dark matter

- Models of individual pulsars produce sharp spectral features as well
- Example: Geminga, a nearby (~ 250 pc) middle-aged (~ 370 000 years) pulsar

In this work: How robust is this spectral feature suggested by simple pulsar models?

Cosmic-Ray Positron Contribution From Pulsars

- Pulsars: rapidly rotating neutron stars that convert their spindown energy into electron-positron pairs \Rightarrow dominant contribution to the local CR positron flux at \sim 50 GeV to TeV energies
- Pulsar birth rate: 1 per century in Milky Way \Rightarrow contribution from potentially \sim 1000 pulsars

Cosmic-Ray Positron Spectrum From Pulsars

• Recent papers that focused on fitting the positron data used models where the contribution from each pulsar has sharp spectral features

Orusa et. al, 2021, arXiv:2107.06300

Cholis & Krommydas, 2021, arXiv:2111.05864

Spectral Features From Pulsars

- Large fraction of positrons are produced when pulsar is very young
- High-energy positrons are cooled faster than low-energy positrons
- ⇒ These initial positrons create sharp cutoff in positron fraction

- Are there mechanisms that can minimize this cutoff?
 - 1. Efficiency of positron production
- 2. Cooling of positrons as they propagate through galaxy

Pulsar Models: Efficiency [Preliminary]

- Pulsar efficiency: fraction of spindown power converted into e^+e^- pairs, $\sim 10\%$
- In simple models: efficiency is assumed to be constant over pulsar age
- But observations suggest that efficiency increases over time

• Pulsar models with increasing efficiency show strong reduction (\sim 30-60%) of the cutoff

Pulsar Models: Cooling [Preliminary]

- Cooling of particles depends on interstellar radiation field (ISRF) and magnetic fields
- Simple models assume same path for all particles, but there are variations on small scales ⇒ particles cool at different rates

- Here: introduced variations in ISRF $\pm \sim 15\%$
- Cutoff is somewhat stretched out

Sharp Spectral Features From Pulsars? [Preliminary]

- Sharp spectral features associated with simple pulsar models can be significantly reduced
- Consistent with smooth CR positron spectrum

Isabelle John

Partikeldagarna 2021

Summary and Conclusion

- Local cosmic-ray positron spectrum is measured to great precision by AMS-02 and looks very smooth
 - Set strong constraints on dark matter models
 - Constrain pulsar models
- Leptophilic dark matter can produce sharp spectral features
 - We set strong constraints on the DM annihilation cross section, e.g. 2 orders of magnitude below thermal cross section for annihilation into e⁺e⁻ at for 20 GeV dark matter mass
- Simple pulsar models suggest sharp spectral features
 - There exist mechanisms that can strongly reduce sharp features [preliminary]

