Progress on the design of an annihilation detector for the HIBEAM/NNBAR program at the European Spallation Source

Partikeldaganar 2021 22nd Nov 2021

Sze Chun Yiu

- 1) Introduction
	- NNBAR experiment
	- Possible design of the NNBAR detector
	- List of detector studies and event variables
- 2) Discussion
	- Detector study based on the signal and cosmic events

1.1 Introduction to the NNBAR detector studies

Goal of the experiment

- Claim a discovery of annihilation event between antineutron and neutron at the **Carbon foil target**
- Annihilation event at the C foil target would generate:
	- ➢ On average **4~5 pions**, including **π⁰** which decays immediately to **2 gammas**
	- ➢ **Invariant mass** of the final state **~1.88 GeV** (2 neutron masses)

Annihilation product simulation

- Simulation of the products was done*
- List of annihilation products → Used by the detector simulation studies through **GEANT4**

* J. Barrow, E. Golubeva, C. Ladd, *"A model of antineutron annihilation in experimental searches for neutron-antineutron transformations"*

22nd Nov 2021 **Since Chun Yiu August 2021 Partikeldagarna 2021** Nov 2021 Nov 2021 Sze Chun Yiu

3

1.2 The Annihilation Detector

* GEANT4 version: geant4.10.06.p02

** Dimensions here are preliminary. These numbers are only used in the simulations as a reference.

We studied different components of the full detector systematically

- The cosmic background was the dominant background in the last free neutron search
- Understanding the signatures of the cosmic particles in the nnbar detector is crucial
- Cosmics particles are generated by an external library named **Cosmic-ray Shower Library (CRY)** Ref. for CRY: https://nuclear.llnl.gov/simulation/

2. Energy and momentum reconstruction

Cones for energy collection

Energy and momentum direction reconstruction

- We developed an algorithm to reconstruct the energy and momentum of **charged** and **neutral** particles
- Reconstruction of **charged particles** relies on the TPC track information and silicon tracker information
- Energy is collected if a signal is inside any cone
- Hits that cannot be associated with any charged track in the TPC are considered as a hit by **neutral particle**

8

- 3.1 Object definition Charged signal particles
- What is an **object**?

Collection of information from different detector components

- Object definition is used to **determine the type of particle** detected
- We developed an object definition to distinguish **charged signal pions** from **protons**

t_N is the cut value $N =$ number of scintillator layers it penetrates The cut value depends on how many layers it penetrates

- **Neutral pion identification**
- ➢ Assume neutral hits are caused by gammas
- \geq Check the mass m0 of any two gammas

$$
n_0 = \sqrt{2E_1E_2(1 - cos\theta)}
$$

 γ If m1 < m0 < m2, identify the two gammas to be π ⁰ decay products

3.2 Pion multiplicity

- An annihilation event on average gives $4 5$ pions:
- Check the **total number of detected pions** in each annihilation event

Check of Energy Conservation:

Calculate the invariant mass W of an event with the results from object definition and energy reconstruction

$$
W = \sqrt{(E_1 + E_2 + \dots + E_n)^2 - |\mathbf{p}_1 + \mathbf{p}_2 + \dots + \mathbf{p}_n|^2}
$$

$$
E_n = \sqrt{m_n^2 + p_n^2}
$$

 $p_n \approx \sqrt{E_{dep,n}^2 + 2 \cdot E_{dep,n} \cdot m_n}$

● Invariant mass of **signal** and **cosmic events**

● **Event Shape Variable:**

The event shape variables highlight the geometric properties of an event

We are interested in the sphericity of different types of event Is the particle flow isotropic?

$$
M_{xyz} = \sum_{i} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} & p_{xi}p_{zi} \\ p_{yi}p_{xi} & p_{yi}^2 & p_{yi}p_{zi} \\ p_{zi}p_{xi} & p_{zi}p_{yi} & p_{zi}^2 \end{pmatrix} \xrightarrow[\lambda_1, \lambda_2, \lambda_3] \lambda_1 > \lambda_2 > \lambda_3
$$

• Define a timing quantity:

$$
\Delta t = t_0 - t_1
$$

 $t1 =$ time when the last signal appears in the scintillator

 $to =$ time when the first signal appears in the scintillator

12

Summary

- Introduced the NNBAR detector design concept
- Introduced different detector studies and event variables

Future works

- Cosmic shielding
- Look at different detector geometries
- Look for possible replacements to lead glass

The End

Thank you for listening!

y direction

** Dimensions here are preliminary. These numbers are only used in the simulations as a reference.

y direction

Cylindrical Geometry **Box Geometry** Box Geometry

Pros:

- Efficient way of using perpendicular area
- Less spending on lead glass
- Less tilting of lead glass blocks (Easier in terms of Engineering)

Cons:

- Cannot be easily prototyped (need to build the whole component)
- Not scalable
- Difficulties in repairing the TPC: need to open whole end surface/dismantled in clean room conditions
- Dead areas are larger than the box geometry

Pros:

- Easy to build and prototype it (scalable)
- Easier to repair the TPC: modules can be easily replaced
- No dead areas

Cons:

- Not using perpendicular area as efficient
- More spending on lead glass
- Complicated tilting (Hard to engineer)

- Major backgrounds of the experiment
- **Cosmic particle background**

The cosmic background was the dominant background in the last free neutron search Understanding the signatures of the cosmic particles in the nnbar detector is crucial

Neutron Capture Gamma Background

Caused by slow neutron capture of the C-12 foil

 $12C + n \rightarrow 13C + \gamma$

High event rate, **10^6 gammas per second**

It is exactly timely correlated with the beam and thus easier to deal with