

ESA Perspective on Cold Atoms in Space

H

Community Workshop on Cold Atoms in Space

÷

23 September 2021

→ THE EUROPEAN SPACE AGENCY

European Leadership in Space and Economy Connections

Maintaining European leadership in space

Best Space Earth Climate System; Scientific excellence; Technological break-throughs; Prepares Europe for ambitious international human spaceflight and robotic missions; System Architect role, able to invite international partners

Promoting space business & commercial initiatives

- Refuelling and in-orbit assembly => COMS market, constellations, robotic exploration
- Space mining: Earth moon, asteroids

Pushing our technological boundaries

Quantum sensors; power systems; in-orbit assembly and fuelling; autonomous operations; deep-space quantum-optical communications; cryogenic sampling and preservation; autonomous operations; safe Earth atmosphere re-entry;

Asteroid mining

🚍 📕 🚬 🚼 🚍 🚼 📕 🚍 🖆 🔲 📕 🚛 📕 🔜 🔤 🖧 🔤 🚳 📕 🚍 🔂 💥 🔤 🔤 👘 🔸 the European space agei

Voyage 2050 sets sails

Icy Moons of the giant planets

From temperate exoplanets to the Milky Way

New physical probes of the early Universe

Necessary Technology development: cold atom interferometry, new power and heat sources, cryogenic sample return, X-ray interferometry, solar sails Builds on European Leadership in key science and technology areas: deep space exploration (Huygens, Rosetta), search for life (e.g. ExoMars & Mars Sample Return)

Quantum Technology Leadership

- Quantum Accelerometer
 - Enables the Quantum mission for climate to provide measurements of new climate variables of unprecedented quality
 - Possible use in Icy moon mission
 - Enables fundamental physics missions
 - To be demonstrated on a pathfinder mission
- Space Atomic/Optical Clocks
 - To test Fundamental Physics in space (Gravitational red-shift, time variation of fundamental constants, tests of SME)
 - Differential geopotential measurements to cm level resolution over the geoid
 - Clock comparisons over intercontinental distances
 - Universal time scales: UTC, TAI...
 - Technology towards future GNSS systems.
- Deep space optical/quantum communication
 - Develop a deep space optical link with connectivity to HydRON with future extension
 - Enables high data rate deep space quantum enabled optical communications
 - Enables synergies with quantum key developments

Road to Space (Microgravity Environment on Ground since 2007)

- Drop tower (Bremen)
 - up to 9s free falling
 - 2-3 drops per day
- Airbus 0-g (Novespace)
 - 20s free falling
 - 30 parabolas per flight
- Einstein Elevator (LP2N)
 - 0.4s free falling
 - Launch every tens seconds

Road to Space

 In-Orbit Laser cooled 87-Rb Atomic Clock (Chinese Academy of Sciences), 2016

• MAIUS (DLR / Hannover), 2017: Sounding Rockets: First BEC in space

Cold Atom Lab (NASA-JPL), 05/2018:
Aboard the ISS

EOP Campaigns

1. CryoVex/KAREN 2017 Campaign: First successful airborne survey of a matter wave gravimeter

GIRAFE 2 GIRAFE 2 Ground truth (DTU) 2. Airgravi Campaign (CNES-ESA):Reaching state of the Art of standard campaign

Precision Challenges for Cold Atom Sensors for EOP & fundamental physics community

airborne

Quantum Pathfinder Mission

Quantum Climate & Icy Moon Mission

·eesa

Fundamental Physics and Quantum Gravity Wave Mission

🚍 📕 🚬 🚼 🚍 🚼 📕 🗮 🏣 🏭 🔲 ன 🔚 📕 🔤 💳 👫 🛶 👰 📲 🛨 👯 🚍 🚟 😭 → THE EUROPEAN SPACE AGENCY

Quantum Space Mission Roadmap

→ THE EUROPEAN SPACE AGENCY \bullet

Space Clock Roadmap

ACES

- Absolute measurement of the gravitational red-shift at a precision $< 50 \cdot 10^{-6}$ after 300 s and $< 2 \cdot 10^{-6}$ after 10 days of integration time.
- Time variations of the fine structure constant a at a precision level of $a^{-1} \cdot da/dt < 1 \cdot 10^{-17} yr^{-1} down$ to $3 \cdot 10^{-18} yr^{-1}$ in case of a mission duration of 3 years.
- Search for anisotropies of the speed of light at the level δc / c < 10^{-10}.
- Launch to ISS in 2022 (TBC)

ISOC Pathfinder

- •Measurement of the Sun gravitational time dilation (red-shift) effect to a fractional uncertainty of 2.5·10⁻⁵.
- Measurement of the Moon gravitational time dilation (red-shift) effect to a fractional uncertainty of 4.10⁻³.
- Enabling world-wide searches for time variation of fundamental constants and tests of the Standard Model Extension.
- Contribution to the realization of atomic time scales to fractional frequency inaccuracy lower than $1 \cdot 10^{-18}$ and synchronized to the few ps level.
- Enable mapping of the geopotential on the land masses of North America, South America, Africa, Europe, Asia, Australia, with approximately 300 km×300 km grid size using transportable $1\cdot10^{-18}$ clocks, with a resolution of 0.15 m²/s² (1.5 cm on the differential geoid height).
- Inter-and intracontinental differential geopotential measurements with resolution in the gravitational potential U at the level down to 0.05 m^2/s^2 (0.5 cm on the differential geoid height).
- Future Space Optical Clock
 - Optical frequency reference (Sr clock laser) and femto-second frequency comb generator
 - Sr optical lattice clock physics package

Examples of long-term economic benefits from basic science

- Electromagnetism (Faraday)
- Quantum Mechanics (Fraunhofer Lines, Ultraviolet Catastrophe, Planck/Heisenberg/Einstein et al., electronics ...)
- Relativity (Mercury perihelium, Einstein, GNSS)
- The Maser/Laser (Astrophysical Molecules, fabrication ...)
- The World-Wide Web (ARPA, CERN, Internet of Things ...)
- The iPhone (WIFI, CCDs, Navigation, Lidar ...)
- Glass (Pyrex, Zerodur, ceramic induction stoves, multifocal lenses from X-ray astronomy...)
- Medical applications from astronomy (adaptive optics for eye surgery, cancer detection algorithms, cold plasma healing, ...)
- Dutch company ASML with global SMD market dominance spun out from TNO astronomy group
- COSINE company spun out of ESTEC: world leader in X-ray optics and high-tech applications
- Many technologies developed for science/EOP in European Industry used on multitude of spacecraft

Deep Space quantum-enabled optical communication

30cm primary telescope Single Photon Detector Focal Plane Camera

· e e sa

DSOC Flight Terminal on Psyche Spacecraft

1 Mbit/s data rate enabled from Saturn with 30cm sending and 1.4m receiving telescope

→ THE EUROPEAN SPACE AGENCY

*