Cold Atoms in Space: German activities and perspective

24 September 2021

K. Kiewisch and T. Driebe, DLR Space Agency, Department Research and Exploration

Community Workshop on Cold Atoms in Space

(Space) Quantum Technologies in Germany

Programmatic Objectives

2018: German Federal Framework Programme Quantum technologies

Scientific excellence "made in Germany"

Strengthening German industry

Strengthening STEM fields

Enhancing the physical understanding of our world

Advancing technology developments

"Benefit on earth"

Quantum Technologies for Space – subject areas

- 2004: QT activities started at the German Space Agency, science-driven
- 2021: QT in departments Research & Exploration, Satellite communication, Satellite Navigation and Earth Observation

Infrastructures for experiments and technology development

• Stand-alone μ-g experiments and step-by-step development of QT for space

Experiments and technology demonstration on multiple microgravity platforms

Bremen Drop tower/Einstein elevator

Parabolic flights

Sounding rockets

Suborbital platforms

Small satellites

International Space Station

Quantum technologies in the research and exploration department

✓ Fundamental physics

- Matter wave interferometry
- ultra-cold quantum gas
- tests of theory of relativity
- Dark energy / dark matter

Quantum entanglement

- ..

- Quantum sensors
- Laser modules
- Frequency combs
- Clock prototypes
- Atomic chips
- Optical dipole traps
- Single photon sources
- Quantum memory
- _ .

Atom Interferometry for Quantum Sensing Activities

• Funding of Quantum Sensing / Atom Interferometry Projects for space started in 2004. German researchers have continually expanded and demonstrated their expertise since

German Space Agency

QUANTUS drop tower project, started 2004, ongoing

First BEC under µg 2007

PRIMUS drop tower project, started 2009, ongoing

- 2014: first Quantum EEP test in a lab with 2 different atomic species
- Development of all-optical traps as alternative trap technology

MAIUS sounding rocket programme, started 2014, ongoing

- First BEC in space, 2017
- MAIUS-2 launch 2022

CAL, NASA cold atom experiment on ISS, started 2018, German contribution to CUAS consortium

• First BEC on the ISS, 2018

Current and Future Activities in Quantum Sensing

INTENTAS Einstein elevator project, started 2021

 surpass the standard quantum limit in a compact and robust atomic sensor with entangled atomic ensembles

BECCAL, US-German cooperation, 2025+

- Future cold atom research on ISS (quantum optics, atom optics and atom interferometry experiments with cold and condensed atoms (Bose-Einstein-condensates)
- Pathfinder for next-generation quantum sensors
- Fundamental research, e.g. Einstein tests, search for dark matter, gravitational waves, stability of fundamental constants

DESIRE Einstein elevator project, started 2021

- Collaboration with NASA/JPL
- Dark energy search with atom interferometry

Quantum Sensing

Current activities (application-oriented)

Quantum Inertial Sensing Systems

- Algorithms to analyse inertial measurements of quantum sensors
- Development of hybrid 1-axis quantum sensors and performance demonstration, preparation for 6-axis sensor and miniaturization
- Compact hybrid 3-axis quantum sensor based on cold atoms

French-German cooperation "QUANTA", 2019-

 CARIOQA-Study: Pathfinder Mission for demonstrating the operation of a Quantum Accelerometer on a satellite.

Space Optical Clocks Heritage

FOKUS

Prototype development for optical clocks in space

- Start of development of a fiber laser-based frequency comb for space applications, 2013
- First frequency comb + Rb spectroscopy in space: proof of concept on sounding rockets, 2015

KALEXUS

• 2nd frequency comb prototype + K spectroscopy in space, 2016

• Improved comb + iodine clock prototype in space, 2018

Space Optical Clocks Current

Based on Ramsey-Bordé Interferometry on thermal Sr beam

- Laser chip technology, Miniaturised optical setups for the physics package
- Increase TRL of frequency comb

Key Technologies for **Rb-2-Photon-Clocks** on Satellites:

High potential for SWaP budget reduction, stability and accuracy

- Increase TRL of frequency comb
- Physics package: Miniaturisation, energy efficiency
- Micro-integrated lasers (towards monolithic integration)

Developments towards highly compact optical space clocks Evaluation of optical clock (elements) for 2nd next generation Galileo

Space Optical Clocks / Metrology Current & Perspectives

Development of prototype of **Sr-lattice clock**, started 2021:

- highly-precise clock for fundamental science, relativistic modeling, optical frequency metrology

Outlook

We strive to

- expand quantum technologies as an important pillar of our programme beyond the current "quantum hype"
- support further development of space-QT towards higher TRLs for application
 - in GNSS
 - earth observation
 - exploration
 - fundamental physics (dark energy, tests of physical theories, gravitational wave detection,...)
- continue successful actitivies: harness the knowledge and expertise gained in the last 2 decades
- In orbit demonstration / validation: push the technology beyond "the valley of death" (e.g. Satellite missions for fundamental physics and earth observation)
- Support development of key components and miniaturisation (laser, atom chips, frequency combs...)
- Team up with European / international partners
- Push the boundaries even further in both fundamental physics and QT applications

Thank you for your kind attention!

Contact persons at DLR German Space Agency

Dr. Thomas Driebe

Dr. Karin Kiewisch

Department Research and Exploration

Thomas.Driebe@dlr.de

Karin.Kiewisch@dlr.de

