

From classical to quantum space gravimetry

Olivier Carraz, Luca Massotti, Ilias Daras, Roger Haagmans, and Pierluigi Silvestrin

ESA UNCLASSIFIED – For ESA Official Use Only 1

M + THE EUROPEAN SPACE AGENCY

Earth Observation Future needs

Space Quantum Gravimetry

- Absolute measurements based on fundamental quantum physics
- No drifts, no mechanisms
- In space: long atom interferometry time, but cannot be tested on ground \rightarrow need in-orbit experiment

1. Cold Atom Interferometer (CAI) interleaved quantum gravity gradiometer (QGG)

GOCE mission evolution goals:

- one order of magnitude lower error in gradients
- no drag compensation necessary

1. 2. Hybridization classical accelerometers/CAI for SST

- - improve "classical" space accelerometers at low frequencies (no drifts in principle)
- raise 'hybrid accelerometer' performance to match that of laser interferometer for much better gravimetry data
- 2. Can be implemented as add-on to existing accelerometer

3

From classical to quantum gravimetry

- 1. Cold Atom Interferometer (CAI) interleaved quantum gravity gradiometer (QGG)
- Static field already improved in 8 months mission (Lifetime for GOCE: 3 years)

 $10⁰$

 10

 $\overline{0}$

۱۵

 10

 10^{-5}

 $\overline{0}$

50

100

Dearee

150

Geoid height error [m]

- Time variable: Needs 1-2 orders magnitude improvement (Sensitivity enhancement, multiple S/C)

EIGEN-6c4

- 2. Hybridization classical accelerometers/CAI for SST
- Drag compensation relaxation
- Low degree improvement (also in Bender configuration)

Cold Atom Interferometer (CAI) for EO

Concepts for Earth Geodesy

1. CAI interleaved gravity gradiometer

2. Hybridization classical accelerometers/CAI

Hardware developments

1. Grating Magneto Optical Trap (MOT)

2. Compact Vacuum Chamber for BEC

3. Agile and compact laser system for CAI

Results

t -42- **UNCLASSIFIED (SANS MENTION DE PROTECTION)** RT 3/24721 DMPH 1. Mission and instrument concepts validated

hybridization algorithm. Th^e interrogation tim^e ^of th^e AI i^s T ⁼ 20 ^ms. Th^e Allan deviation for th^e ES ^acceleromete^r ha^s beeⁿ

F igur^e 32 - Root ^squar^e ^of PSD ^acceleration nois^e for th^e ES ^acc., th^e Ato^m ^acc., and th^e ES ^acc. ^corrected by th^e AI through ^a $\Gamma_{\text{2n}\text{-} \text{Q}n\text{-} \text{ground validation}}$ **CAI** Classical

GEN-F157-5. Laser System

→ THE EUROPEAN SPACE AGENCY

Industry and Academic Partners

Preliminary timeline for EBB development

- 1. Quantum SST: Hybrid concept validated on ground and in airplane. Next step is the development of an EBB (and further of a mission demonstration)
- 2. Quantum GG: Path toward an EBB by 2025. Some subsystems need to be developed (modular to any concept).
- 3. Technology based on BEC generation

Concepts for future missions: first outlook

9