

From classical to quantum space gravimetry

Olivier Carraz, Luca Massotti, Ilias Daras, Roger Haagmans, and Pierluigi Silvestrin

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

Space Quantum Gravimetry

- Absolute measurements based on fundamental quantum physics
- No drifts, no mechanisms
- In space: long atom interferometry time, but cannot be tested on ground → need in-orbit experiment
- 1. Cold Atom Interferometer (CAI) interleaved quantum gravity gradiometer (QGG)

GOCE mission evolution goals:

- one order of magnitude lower error in gradients
- no drag compensation necessary

2. Hybridization classical accelerometers/CAI for SST

- improve "classical" space accelerometers at low frequencies (no drifts in principle)
- raise 'hybrid accelerometer' performance to match that of laser interferometer for much better gravimetry data
- Can be implemented as add-on to existing accelerometer

→ THE EUROPEAN SPACE AGENCY

From classical to quantum gravimetry

- 1. Cold Atom Interferometer (CAI) interleaved quantum gravity gradiometer (QGG)
- Static field already improved in 8 months mission (Lifetime for GOCE: 3 years)
- Time variable: Needs 1-2 orders magnitude improvement (Sensitivity enhancement, multiple S/C)

10⁰

10

0

0

10

 10^{-5}

0

Geoid height error [m]

- Drag compensation relaxation
- Low degree improvement (also in Bender configuration)

Cold Atom Interferometer (CAI) for EO

Concepts for Earth Geodesy

1. CAI interleaved gravity gradiometer

2. Hybridization classical accelerometers/CAI

Hardware developments

1. Grating Magneto Optical Trap (MOT)

2. Compact Vacuum Chamber for BEC

3. Agile and compact laser system for CAI

Results

RT 3/24721 DMPH UNCLASSIFIED 1. Mission And Anti-Charles Concepts validated

2_{NE}Qn-ground validation

ĊAİ

High frequency part of the ES acc. 1000 1000

30

Laser System

Classical

→ THE EUROPEAN SPACE AGENCY

Industry and Academic Partners

Preliminary timeline for EBB development

- 1. Quantum SST: Hybrid concept validated on ground and in airplane. Next step is the development of an EBB (and further of a mission demonstration)
- 2. Quantum GG: Path toward an EBB by 2025. Some subsystems need to be developed (modular to any concept).
- 3. Technology based on BEC generation

Concepts for future missions: first outlook

9

