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Acceleration and Energy Gain, 1

• To accelerate we require a force in the direction of

motion!

• Newton-Lorentz force on a charged particle:

~F =
d~p

dt
= q

(

~E + ~B × ~v
)

(1)

• Second term is always perpendicular to motion: no
acceleration

• Hence to accelerate along the direction of motion we need
an electric field in that direction.

dp

dt
= qEz (2)
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Acceleration and Energy Gain, 2

• In relativistic dynamics energy and momentum are linked,

E2 = E2
0 + p2c2, dE = v dp (3)

• The rate of energy gain per unit length of acceleration is
therefore,

dE

dz
= v

dp

dz
=

dp

dt
= qEz (4)

• And the kinetic energy gained from the electric field
along z is,

dW = dE = qEz dz

∴ W = q

∫

Ez dz = qV (5)
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Units of Energy

• Accelerator physics typically uses units of electron volts

for energy.

• 1 eV (electron volt) is the kinetic energy lost (or gained)
by a particle of unit charge when accelerated from rest
through a potential difference of one volt in vacuum.

• Some useful conversions:
1 eV 1.602× 10−19 J
1 eV/c2 1.783× 10−36 kg

electron 9.109× 10−31 kg 0.511 MeV/c2

proton 1.673× 10−27 kg 938.272 MeV/c2
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Methods of Acceleration

• Electrostatic fields are limited by insulation
problems and magnetic fields don’t accelerate

• For circular machines DC acceleration is

impossible as
∮

~E · d~s = 0

• From Maxwells equations,

∇× ~E = −
∂ ~B

∂t
,

∮

~E · d~s = −

∫∫

∂ ~B

∂t
· d ~A

(6)
a time varying magnetic field generates

an electric field.

• Therefore, use time varying fields which for
most accelerator applications are at RF
frequencies.
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Phase Conventions

1. For linear accelerators, the origin of time is taken as the
positive crest of the RF voltage.

2. For circular accelerators, the origin of time is taken as the
positive gradient zero crossing of the RF voltage.

3. We will stick to the circular accelerator convention.

Rob Williamson 7/57



The Synchrotron, 1

• Constant orbit during
acceleration

• Revolution frequency increases
with energy

• RF cavity frequency increases
with energy

• Magnetic field strength
increases to maintain orbit
radius

• Synchronism condition:

T = hTRF =
2πR

v
(7)
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The Synchrotron, 2

The synchrotron is so called because the accelerating RF
cavities and the magnetic fields all have to work in synchronism
in order for it to work. There is a synchronous RF phase for
which the energy gain is precisely what is required to match the
increase in magnetic field each turn. This implies the following
conditions:

• Energy gain per turn, ∆Eturn = eV sinφs

• Synchronous particle

• RF synchronism ωRF = hω

• Constant orbit

• Bρ = p/e, implying a varying magnetic field
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Examples of Synchrotrons

ISIS Spallation Source, UK LHC, CERN, Switzerland

Diamond Light Sources, UK Glasgow Synchrotron, UK
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Energy Ramping

The momentum and magnetic field must increase following the
magnetic rigidity equation

p = eBρ ⇒
dp

dt
= eρ

dB

dt
(8)

∆pturn = eρ
dB

dt
T

= eρ
dB

dt

2πR

v
(9)

From equation 3 we have dE = v dp, therefore

∆Eturn = v∆pturn

= 2πReρ
dB

dt
(10)
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RF Acceleration

ISIS RF cavity, h=2

9 cell SC cavity for ILC

The energy gain is provided by the RF
voltage,

∆Eturn = 2πReρ
dB

dt
= eV sinφs (11)

φs = arcsin

(

2πRρ
Ḃ

V

)

(12)

where φs = synchronous phase.
Each synchronous particle satisfies
the rigidity equation (eqn 8). They have
the nominal energy and follow the nom-
inal trajectory.
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Frequency Change

• Acceleration increases the revolution frequency, so
the RF frequency has to follow

f =
fRF (t)

h
=

v(t)

2πR
=

1

2πR

p(t)c2

E(t)
=

1

2πR

ec2ρB(t)

E(t)
(13)

• Using the relativistic equation E2 = (m0c
2)2 + p2c2 we find

the RF frequency must follow the magnetic field with

fRF (t)

h
=

c

2πR

√

B(t)2

B(t)2 + (m0c2/ecρ)
2

(14)

• When B becomes large in comparison to m0c
2/ecρ

(corresponding to v → c) the frequency tends to c/2πR
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Revolution Frequency Increase

We’ve seen that the revolution and RF frequency change during
acceleration depending on the particle type and the magnetic
field ramp. This is more important at lower energies and

for heavier particles.

PSB 50 MeV - 1.4 GeV 602 kHz - 1746 kHz 190%
PS 1.4 GeV - 25.4 GeV 437 kHz - 477 kHz 9%
SPS 25.4 GeV - 450 GeV 43.45 kHz - 43.478 kHz 0.06%
LHC 450 GeV - 7 TeV 11.245 kHz 2× 10−6

In lower energy circular accelerators the RF system needs more
flexibility.
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Particle Types and Acceleration

The specific accelerating technology depends upon the evolution
of the particle velocity

• Electrons reach a constant
velocity (∼ c) at low energy

• Protons and heavy ions
require much more energy to
reach a constant velocity

• RF resonators will be
optimised for different
velocities/frequencies

• Magnetic field follows the
momentum increase

E = γm0c
2 , γ =

E

E0

=
1

√

1− β2

Electron, 0.511 MeV; Proton, 938 MeV;
Uranium-238, 222 GeV
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Phase stability in a Linac - 1

• Consider a series of gaps, operating in the 2π mode

• 2π mode implies ~E is the same in all gaps at any given time

• eVs = eV sinφs, the energy gain required for a particle to
reach the next gap with the same RF phase: P1, P2
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Phase stability in a Linac - 2

• Consider a series of gaps, operating in the 2π mode

• 2π mode implies ~E is the same in all gaps at any given time

• eVs = eV sinφs, the energy gain required for a particle to
reach the next gap with the same RF phase: P1, P2
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Phase stability in a Linac - 3

• With increasing energy comes an increase in velocity
• M1 and N1 move toward the synchronism ⇒ STABLE
• M2 and N2 move away from synchronism ⇒ UNSTABLE
• N.B. Ultra-relativistic particles no longer gain

velocity
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Off-Energy Particles

If a particle is slightly off the design momentum it will have
a different orbit.

• Path length of an orbit
displaced by x

ds0 = ρdθ ds = (ρ+ x)dθ

• Relative difference in path
length (Dx = dispersion)

dl

ds0
=

ds− ds0
ds0

=
x

ρ
=

Dx

ρ

dp

p
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Momentum Compaction

• Integrating leads to the total path length change

∆C =

∮

dl =

∮

x

ρ(s0)
ds0 =

∮

Dx(s0)

ρ(s0)

dp

p
ds0 (15)

note that since Dx is usually positive the total path length
increases for higher energy particles.

• Momentum compaction factor, αc is defined as

αc ≡
dL/L

dp/p
=

1

L

∮

Dx(s0)

ρ(s0)
ds0 ≈

1

C

∑

i

〈Dx〉i θi (16)

where 〈Dx〉i and θi are the average dispersion and the
bending angle of the ith dipole.
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Transition Energy, 1

• Off-momentum particles have different revolution
frequencies to on-momentum particles due to different orbit
lengths and velocities

fr =
βc

2πR
⇒

dfr
fr

=
dβ

β
−

dR

R
=

dβ

β
− αc

dp

p
(17)

• Calculate dβ/β as a function of dp/p

p = γm0βc ⇒
dp

p
=

dβ

β
+

dγ

γ
=
(

1− β2
)

−1 dβ

β
= γ2

dβ

β
(18)
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Transition Energy, 2

• Putting these two equations together (eqns 17 and 18) we
get the relative change in revolution frequency

dfr
fr

=

(

1

γ2
− αc

)

dp

p
= η

dp

p
(19)

where η = γ−2 − αc = γ−2 − γ−2
t is the slip factor

• Annoyingly in some references η is defined with a minus
sign so be careful!

• Transition energy is when γ = γt = α
−1/2
c and η = 0. At

this energy the revolution frequency is independent of
momentum deviation.

• Below transition a higher momentum particle has a
higher fr than the synchronous particle, above transition

the converse is true.
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Phase stability in a Synchrotron - 1

The definition of the slip factor, η (equation 19), an increase in
momentum:

• Below transition (η > 0 ⇒ γ < γt) gives a higher

revolution frequency (increase in velocity dominated)

• Above transition (η < 0 ⇒ γ > γt) gives a lower

revolution frequency as v ≈ c and a longer path
(momentum compaction dominated)
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Phase stability in a Synchrotron - 2

The definition of the slip factor, η (equation 19), an increase in
momentum:

• Below transition (η > 0 ⇒ γ < γt) gives a higher

revolution frequency (increase in velocity dominated)

• Above transition (η < 0 ⇒ γ > γt) gives a lower

revolution frequency as v ≈ c and a longer path
(momentum compaction dominated)
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Phase stability in a Synchrotron - 3

η =
1

γ2
− αc =

1

γ2
−

1

γ2t
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Longitudinal Dynamics

• The acceleration of charged particles in circular machines
involves the coupled variables of energy and phase. The
dynamics is often referred to as synchrotron motion.

• As there is a well defined synchronous particle (φs, Es)
it is best to consider particle coordinates with respect to
that particle.

• Therefore we introduce a series of reduced variables:
∆E = E − Es, particle energy
∆p = p− ps, particle momentum
∆φ = φ− φs, particle RF phase
∆θ = θ − θs, azimuthal angle
∆fr = fr − fr,s, revolution frequency
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First Energy-Phase Equation

The RF phase coordinate is related to the
azimuth by ∆φ = φ− φs = −h∆θ, or

∆ω =
d∆θ

dt
= −

1

h

d∆φ

dt
= −

1

h

dφ

dt
(20)

From the definition of the slip factor (equation 19) and the
relation between energy and momentum (equation 3) we get the
first energy phase equation:

dφ

dt
= hωrη

dp

p
=

hω2
rη

β2E

(

∆E

ωr

)

(21)
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Second Energy-Phase Equation - 1

• The energy gain per turn has already been defined as
∆Eturn = eV sinφs (equation 11).

• So the rate of energy gain is Ė = freV sinφ

• The rate of relative energy change with respect to the
synchronous particle is

∆

(

Ė

ωr

)

=
eV

2π
(sinφ− sinφs) (22)

• Expanding the L.H.S. to first order

∆(ĖTr) ∼= Ė∆Tr + Tr,s∆Ė = ∆EṪr + Tr,s∆Ė =
d(Tr,s∆E)

dt
(23)
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Second Energy-Phase Equation - 2

• This leads to the second energy-phase equation

d

dt

(

∆E

ωr

)

=
eV

2π
(sinφ− sinφs) (24)

• Combining these two equations leads to the longitudinal

equation of motion

d

dt

(

β2E

hηω2
r

dφ

dt

)

+
eV

2π
(sinφ− sinφs) = 0 (25)

• This second order differential equation is non-linear. Also,
the parameters within the bracket (in general) vary slowly
in time
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Longitudinal Hamiltonian

• The two energy-phase equations can also be derived from a
Hamiltonian, H (the total energy in the system) in
canonical variables (φ,W ) (W = ∆E/ωr)

H(φ,W ) =
hω2

0η

2β2Es
W 2 +

q

2π
U(φ) (26)

where U(φ) =
∫ φ
φs [V (φ′)− V (φs)] dφ

′ is the potential
energy

• The two energy-phase equations are then derived from the
Hamiltonian by

dW

dt
= −

∂H(φ,W )

∂φ

dφ

dt
=

∂H(φ,W )

∂W
(27)
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Single Harmonic RF - 1

Let’s take the simple example we’ve been working with, single
harmonic RF with V (φ) = V1 sinφ

• The potential is:

U(φ) = V1 [cosφs − cosφ− (φ− φs) sinφs] (28)
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Single Harmonic RF - 2

• What we have is a potential

well created by the RF cavity
voltage

• As the synchronous phase
changes, or the amount of
acceleration required to
maintain synchronism
changes, the shape of the well
changes

• What does the Hamiltonian
look like?
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Single Harmonic RF - 3

H(φ,W ) =
hω2

0η

2β2Es
W 2 +

qV1

2π
[cosφs − cosφ− (φ− φs) sinφs]

(29)

• How does this help?

• Contours of constant H are
particle trajectories, H
is conserved

• Let’s consider some
particles near to φs . . .
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Small Amplitude Oscillations - 1

Rearranging the longitudinal EOM (eqn 25) assuming constant
β,E, ωr and η:

φ̈+
Ω2
s

cosφs
(sinφ− sinφs) = 0 with Ω2

s =
hηω2

reV cosφs

2πβ2Es
(30)

• Consider small deviations in phase from reference

sinφ− sinφs = sin(φs +∆φ)− sinφs

∼= ∆φ cosφs (31)

• Thereby reducing the motion to a harmonic oscillation

φ̈+Ω2
s∆φ = 0 (32)

where Ωs is the synchrotron angular frequency
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Small Amplitude Oscillations - 2

• The synchrotron tune Qs = Ωs/ωr is the number of
synchrotron oscillations per revolution

• Typical values are ≪ 1, 10−3 for proton synchrotrons and
10−1 for electron storage rings

• It also reveals a stability condition for φs as

Ω2
s > 0 ⇒ η cosφs > 0 (33)

γ < γt η > 0 0 < φs < π/2

γ > γt η < 0 π/2 < φs < π
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Synchrotron Oscillations - 1

• Consider the simple case of
no acceleration (φs = 0),
below transition (γ < γt)

• Particle S is synchronous

• Particle A is decelerated,
fr decreases so it arrives
later (i.e. moves toward S)

• Particle B is accelerated,
fr increases so it arrives
earlier (moves toward S)
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Synchrotron Oscillations - 2

• The particle oscillates around the synchronous phase,
so-called synchrotron oscillations

• The amplitude depends on the initial phase and energy
• Synchrotron frequency is much slower than the

transverse (usually multiple revolutions per oscillation)
• The restoring force from the RF electric field is much
smaller than the quadrupolar magnetic field
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Longitudinal Phase Space

The energy-phase oscillations can also be observed in the
longitudinal phase space we saw with the Hamiltonian

The particle trajectory in phase
space describes the longitudinal
motion.

Longitudinal emittance is
the phase space area including
all the particles
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Longitudinal Phase Space Oscillations

• Particles follow Hamiltonian contours oscillating around
the synchronous point (φs, Es)

• Energy is exchanged for RF phase like exchanges between
kinetic and potential energy

• This is called synchrotron motion
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Examples

These are all for below transition
φs = 0◦, phase distribution
φs = 0◦, energy distribution

Rob Williamson 40/57

LongMotion_phase_phis0.gif
LongMotion_energy_phis0.gif


Large Amplitude Oscillations

• When ∆φ is large the
EOM is non-linear

• Move from elliptical orbits
to hyperbolic close to UFP

• Can use Hamiltonian to
calculate the separatrix
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Separatrix

• First find the co-ordinate of UFP from dU
dφ , φ = π − φs

• Calculate Hamiltonian of the separatrix from equation (29)

Hsep =
qV1

2π
[cosφs − cos(π − φs)− (π − 2φs) sinφs]

=
qV1

2π
[2 cosφs − (π − 2φs) sinφs] (34)

• Put back into the Hamiltonian to get separatrix equation

∆Esep =

√

qV β2Es

πhη
[cosφs + cosφ+ (φ− π + φs) sinφs]

(35)
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RF Buckets

• Restoring force is non-linear ⇒
speed depends on (φ,∆E)

• Two fixed points, unstable and
stable

• Two clear regions (libration
and rotation) separated by the
separatrix passing through the
UFP, at the maximum of U(φ)

• Oscillatory motion around the
SFP, at the minimum of U(φ)

• Rotary motion beyond the
separatrix, the RF bucket
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Terminology

• Bunches of particles fill
only a portion of the
bucket area

• RF bucket area =
longitudinal acceptance

in units of eVs

• Bunch area =
longitudinal emittance

= 4πσ∆Eσ∆t

• N.B. References can

use different definitions

for emittances!
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Energy Acceptance

• It is clear the separatrix has a maximum at φ = φs

• RF bucket height also referred to as energy acceptance

(

∆E

Es

)

max

=

√

qV β2

πhηEs
[2 cosφs + (2φs − π) sinφs] (36)

• It depends strongly on φs

• It becomes smaller when φs is
changing during acceleration

• A higher voltage ⇒ larger

acceptance

• For higher h the same voltage
produces a smaller acceptance
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Accelerating Bucket - 1
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Accelerating Bucket - 2

Examples (all below transition)
φs = 30◦, phase distribution
φs = 30◦, energy distribution

• Motion still divided into
two clear regions

• Stable area (RF bucket)
reduces in size
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Summary

• How to accelerate charged particles . . .

• What makes a synchrotron a synchrotron . . .

• Momentum compaction, slip factors, dispersion, . . .

• Transition, phase stability, synchronous phase, . . .

• Deriving the equation of motion, . . .

• Hamiltonians, potentials, fixed points, . . .

• RF buckets, separatrices, emittance, synchrotron tune, . . .

• Longitudinal acceptance, energy acceptance, . . .

• What next?
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Spare Slides
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Crossing Transition

• Transition ⇒ velocity change and
path length change compensate

• fr is independent from the
momentum offset

• Crossing transition makes the
previous φs unstable

• RF needs to rapidly change its
phase called a phase jump

• For example, PS (1.4 - 25.4 GeV)
crosses transition at 6 GeV
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Beam Matching - 1

• How well can we confine and
control particles?

• Want to put them within a given
H contour and keep them there

• Make the density a function of H
and it will conform to the
contours in phase space

• It forms a stationary

distribution (time independent)
assuming H is time independent
or adiabatically varying

• Matched

• Unmatched
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Effect of a Mismatch

• Consider a short bunch with a large energy spread

• After a quarter synchrotron oscillation: a long bunch with
a small energy spread

• For larger amplitudes the synchrotron motion is slower
which leads to filamentation and emittance growth and
possible beam loss

• Matched example, Mismatched example, Phase error
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Injection

• Where are you injecting from?

• Bunch to bucket transfer ⇒
match bunch from bucket of
previous accelerator to next

• Particles always subject to
longitudinal focusing

• Time structure of beam preserved

• No need for bunch capture,
adiabatic or otherwise
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RF Capture - 1

• A debunched beam can be captured by the synchrotron RF

• With constant RF volts during injection the beam
filaments to fill the bucket
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RF Capture - 2

• Increase the RF volts adiabatically (i.e. slowly with
respect to the synchrotron motion)

• Capture a large portion in a relatively small emittance
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Space Charge

• Another important factor for intense low/medium energy
hadron beams is the effect of space charge

• The self field of the beam then becomes significant
compared to the RF focusing field

• Depends on the beam distribution and, in general, is a time
varying addition to the potential

• Makes analytical solutions, and understanding intense
beams difficult!

• Look for stationary distributions WITH space charge

• Useful stationary distribution found by Hofmann and
Pedersen
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