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Resonance & Resonant Conditions

▪ After a certain number of turns around the machine the phase 
advance of the betatron oscillation is such that the oscillation repeats.

▪ For example:

▪ If the phase advance per turn is 120º then the betatron oscillation will 
repeat itself after 3 turns.

▪ This could correspond to tune Q = 3.333 or 3Q = 10.

▪ But also Q = 2.333 or 3Q = 7.

▪ The order of a resonance is defined as‘n’in n x Q = integer
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Q = 3.333

Third order resonant betatron oscillation 

3Q = 10, Q = 3.333, q = 0.333

1st turn

2nd turn

3rd turn
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Q = 3.333 in Normalised Phase Space

1st turn

2nd turn

3rd turn

✓ Third order resonance on a normalised phase space plot

2πq = 2π/3



Resonant Conditions: A bit more detail

• Synchrotron is periodic focusing system, often made up of 

smaller periodic regions.

• Can write down a periodic one-turn matrix as 

• Tune is defined as the total betatron phase advance in one 

revolution around the ring, divided by 2π
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Resonant Conditions: A bit more detail
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Resonance & Resonant Conditions

▪ Resonance can be excited through various imperfections in the beamline.

▪ The magnets themselves.

▪ Unwanted higher-order field components in magnets.

▪ Tilted magnets.

▪ Experiment solenoids (LHC experiments).

• Aim is to reduce and compensate these effects as much as possible and 

then find some point in the tune diagramme where the beam is stable.
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▪ It is not possible to construct a perfect machine.

▪ Magnets can have imperfections.

▪ The alignment in the machine has non-zero tolerance.

▪ …

▪ So, have to ask:

▪ What will happen to betatron oscillation due to various field errors.

▪ Consider errors in dipoles, quadrupoles, sextupoles, etc…

▪ Study the beam behaviour as a function of ‘Q’.

▪ How is it influenced by these resonant conditions?

Machine Imperfections



Machine Imperfections

◼ Various imperfections in the beamline will 

alter the tune in a periodic machine.

◼ One way to visualize the influence of these 

imperfections is by looking at what happens 

in the normalised phase space plot.
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✓ For Q = 2.00: Oscillation induced by the dipole kick grows on 
each turn and the particle is lost (1st order resonance Q = 2).

Dipole (deflection independent of position)

y’b

y

Q = 2.00
1st turn

2nd turn

3rd turn

y’b

y

Q = 2.50

✓ For Q = 2.50: Oscillation is cancelled out every second turn, 
and therefore the particle motion is stable.
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✓ For Q = 2.50: Oscillation induced by the quadrupole kick grows 
on each turn and the particle is lost 

(2nd order resonance 2Q = 5)

Quadrupole (deflection  position)

✓ For Q = 2.33: Oscillation is cancelled out every third turn, and 
therefore the particle motion is stable.

Q = 2.50 1st turn

2nd turn

3rd turn

4th turn

Q = 2.33
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✓ For Q = 2.33: Oscillation induced by the sextupole kick grows on 
each turn and the particle is lost 

(3rd order resonance 3Q = 7)

Sextupole (deflection  position2)

✓ For Q = 2.25: Oscillation is cancelled out every fourth turn, and 
therefore the particle motion is stable.

1st turn

2nd turn

3rd turn

4th turn

Q = 2.33 Q = 2.25

5th turn
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▪ Let us try to a mathematical expression for amplitude growth in 
the case with a quadrupole:

Resonant Condition - Quadrupole

2πQ = phase angle over 1 turn = θ

Δβy’ = kick

a = old amplitude

Δa = change in amplitude

2πΔQ = change in phase

y does not change at the kick

y = a cos(θ)

In a quadrupole Δy’ = lky

So we have:

Δa = βΔy’ sin(θ) = lβ sin(θ) a k cos(θ)

Only if 2πΔQ is small

y’b

y

a

Dby’

Da
2πDQ

θ

θ
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Resonant Condition - Quadrupole

▪ So have: Da = l·b·sin() a·k·cos() )2sin(
2


bk

a

a 
=

D


▪ Each turn θ advances by 2πQ

▪ On the nth turn θ = θ + 2nπQ 

▪ For q = 0.5 the phase term, 2(θ + 2nπQ) is constant:

▪ Over many turns: ( )( )


=

+=
D

1

22sin
2 n

Qn
k

a

a


b Da→0

( )( ) =+


=1

22sin
n

Qn =
D

a

a
and thus:

Sin(θ)Cos(θ) = 1/2 Sin (2θ)

This term will be ‘zero’ as it decomposes in Sin and 

Cos terms and will give a series of + and – that cancel 

out in all cases where the fractional tune q ≠ 0.5 
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▪ In this case the amplitude will grow continuously until the particle is lost.

▪ Therefore, conclude as before that: quadrupoles excite 2nd order 
resonances for q=0.5

▪ Namely, for Q = 0.5, 1.5, 2.5, 3.5,…etc……

Resonant Condition - Quadrupole
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▪ Study phase θ:

Resonant Condition - Quadrupole

y’b

y

a

Dby’

Da2πDQ

θ

2πQ = phase angle over 1 turn = θ

Δβy’ = kick

a = old amplitude

Δa = change in amplitude

2πΔQ = change in phase

y does not change at the kick

y = a cos(θ)

In a quadrupole Δy’ = lky

a

y
Q

b


cos)'(
2

D
=D

a

kal
Q

)cos()cos(

2

1 b




=D

θ
s

b cos)'( ys D=

2πΔQ << Therefore Sin(2πΔQ) ≈ 2πΔQ 
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Resonant Condition - Quadrupole

▪ Each turn θ advances by 2πQ

▪ On the nth turn θ = θ + 2nπQ 

▪ Over many turns: ( )( ) 


=

++=D
1

122cos
4

1
n

nQkQ b



‘zero’

▪ So have:
a

kal
Q

)cos()cos(

2

1 b




=D

)1)2(cos(
4

1
+=D b


klQ , which is correct for the 1st turn

▪ Averaging over many turns: dskQ ..
4

1
b


=D

▪ Since:
2

1
)2(

2

1
)(2 +=  CosCos can rewrite this as:
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▪ Can apply the same arguments for a sextupole:

Resonant Condition - Sextupole

and thus
2' kyy =D cos' 22 kay =D▪ For a sextupole

 
b

b cos3cos
2

cossin 2 +==
D ka

ka
a

a 
▪ Get :

▪ Summing over many turns gives:




=

+++=
D

1

)2cos()2(3cos
2 n

nQnQ
ka

a

a


b

3rd order resonance term 1st order resonance 

term

▪ Sextupoles excite 1st and 3rd order resonance

q = 0 q = 0.33
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▪ Can apply the same arguments for an octupole:

Resonant Condition - Octupole

and thus3' kyy =D 33 cos' kay =D▪ For an octupole

▪ Octupole errors excite 2nd and 4th order resonance and are 
very important for larger amplitude particles. 

q = 0.5 q = 0.25

▪ We get : b 32 cossinka
a

a
=

D

▪ Summing over many turns gives:

 a2(cos 4(+2nQ) + cos 2(+2nQ))

a

aD

Amplitude squared

4th order resonance term

2nd order resonance 

term

Can restrict dynamic 

aperture



Stopband

• The tune does not stay constant in the machine. This leads 

to a variation of Q for each turn.

• This variation can go up and down, giving a range of 

possible values for Q, which we can call ΔQ.

• This range of values has a width, which is called the 

stopband of the resonance.

• Not only do you want to avoid the resonances, but you want 

to avoid being in the stopband of a resonance as well, as it 

may pull you into the resonance itself.
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Stopband

▪ This width is called the stopband of the resonance.

▪ which is the expression for the change in Q
due to a quadrupole… (fortunately !!!)

dskQ ..
4

1
b


=D

▪ But note that Q changes slightly on each turn

)1)2(cos(
4

1
+=D b


klQ

Related to Q

Max variation 0 to 2

▪ Q has a range of values varying by:


b

2

k

▪ So even if q is not exactly 0.5, it must not be too close, or at some 
point it will find itself at exactly 0.5 and‘lock on’to the resonant 
condition.
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▪ Quadrupoles excite 2nd order resonances.

▪ Sextupoles excite 1st and 3rd order resonances.

▪ Octupoles excite 2nd and 4th order resonances.

Intermediate Summary

▪ This is true for small amplitude particles and low strength 
excitations.

▪ However, for stronger excitations, sextupoles will excite higher 
order resonances (non-linear).
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Coupling

▪ Coupling is a phenomena that converts betatron motion in one plane 
(horizontal or vertical) into motion in the other plane.

▪ Fields that will excite coupling are:

▪ Skew quadrupoles, which are normal quadrupoles, but tilted by 
45º about their longitudinal axis.

▪ Solenoidal (longitudinal magnetic field).
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Skew Quadrupole

N

S

N

S

Magnetic field

Like a normal quadrupole, 

but tilted by 45º
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Solenoid - Longitudinal Field (1)

Magnetic field
Particle trajectory

Beam axis

Transverse velocity 

component
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Solenoid - Longitudinal Field (2)

Above:

The LPI solenoid that was used for the 

initial focusing of the positrons. 

It was pulsed with a current of 6 kA for 

some 7 s, it produced a longitudinal 

magnetic field of 1.5 T.

At right:

the somewhat bigger CMS solenoid
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▪ This coupling means that one can transfer oscillation energy from one 
transverse plane to the other.

▪ Exactly as for linear resonances (single particle) there are resonant 
conditions.

▪ If meet one of these conditions, the transverse oscillation amplitude will 
again grow in an uncontrolled way.

Coupling and Resonance

nQh  mQv = integer
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General Tune Diagramme

Qh

Qv

2          2.25        2.5         2.75

2.33 2.66

2

2.25

2.5

2.75
Qh - Qv= 0

Qh + Qv= 5



Resonant Conditions
◼ Change in tune or phase advance 

resulting from errors.

❑ Steer Q away from certain 

fractional values which can 

cause motion to resonate and 

result in beam loss.

◼ Resonance takes over and walks 

proton out of the beam for:

where

is resonance order and p is 

azimuthal frequency that drives it.

SPS Working Diagramme
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PS Booster Tune Diagramme

4.0

5.0

4.1 4.2 4.3 4.4 4.5

QH

QV

5.1

5.2

5.3

5.4

5.5

5.6

5.7
3Qv=17

Injection

Ejection

3Qv=16

2Qv=11

3
Q

h
=

1
3

Qh-2Qv=-6

Q
h-Q

v= -1

Qh-2Qv= -7

2
Q

h
-Q

v
=

 -
3

Q
h+Q

v=10

2
Q

h
+

Q
v=

1
4

Qh+2Qv=15

During acceleration change the 

horizontal and vertical tune 

to a place where the beam is 

least influenced by resonances.

injection

ejection



Imperfection: Closed-orbit Distortion

◼ As current is slowly raised in dipole:

❑ The zero-amplitude betatron particle follows distorted orbit.

❑ Distorted orbit is closed.

❑ Particle still obeys Hill’s Equation.

❑ Except at the kink (dipole) it follows a betatron oscillation.

❑ Other particles with finite amplitudes oscillate about this new 

closed orbit.



Sources of Closed-orbit Distortion



Imperfection: Chromaticity

• The trace is related to the new tune:
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Chromaticity and Tune

• Going through a bit of math:

• Last two terms must be equal, therefore

Integrate around ring

Total change in tune

• The tune will always have a bit of a spread due to the 

momentum spread. You can define the natural chromaticity 

as:



Measurement of Chromaticity

• Steering the beam to a new mean radius, and adjusting the 

RF frequency to vary the momentum, can measure the Q.
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Chromaticity Correction

• Need a way to connect the momentum offset, δ, to focusing.

• We can do this using sextupoles, which give nonlinear 

focusing (dependent on position) and dispersion 

(momentum-dependent position).
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Dispersion (1)

• Dispersion, D(s), is defined as the change in particle 

position with fractional momentum offset, δ.

• Originates from momentum dependence of dipole bends.

• Add explicit momentum dependence to EOM:

Particular sol’n inhomog. DE w/ periodic ρ(s).

• The trajectory has two parts:
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Dispersion (2)
• Noting that dispersion is periodic
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Chromaticity Correction 

• Recall that we define the natural chromaticity as 

• And that the trajectory goes as 

Nonlinear Like quad: K(s)

• You end up getting a total chromaticity from all sources as

Notice that this means strong focusing (large K) requires large sextupoles!
40



Chromaticity Correction

• Sextupole field acts to increase the quadrupole magnetic field

for particles that have a positive displacement and decrease

the field for particles with negative displacements.
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Chromaticity Correction

• Since dispersion describes how momentum changes radial

position of the particles, sextupoles will alter focusing field

seen by the particles as a function of momentum.
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Sextupoles & Chromaticity

▪ There are two chromaticities ξh, ξv

▪ However, the effect of a sextupole depends on β(s) and this 
varies around the machine.

▪ Two types of sextupoles are used to correct the chromaticity.

▪ One (SF) is placed near QF quadrupoles where βh is large and βv

is small, this will have a large effect on ξh

▪ Another (SD) placed near QD quadrupoles, where βv is large and 
βh is small, will correct ξv

▪ Sextupoles should be placed where D(s) is large, in order to 
increase their effect, since Δk is proportional to D(s).
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