Lecture 7
 Beams and Imperfections

Professor Emmanuel Tsesmelis Principal Physicist, CERN
Visiting Professor, University of Oxford

Graduate Accelerator Physics Course John Adams Institute for Accelerator Science

28 October 2021

Contents - Lecture 7

- Resonance \& Resonant Conditions
- Closed-orbit Distortion
- Chromaticity Correction
- Dispersion

Resonance \& Resonant Conditions

- After a certain number of turns around the machine the phase advance of the betatron oscillation is such that the oscillation repeats.
- For example:
- If the phase advance per turn is 120° then the betatron oscillation will repeat itself after 3 turns.
- This could correspond to tune $\mathrm{Q}=3.333$ or $3 \mathrm{Q}=10$.
- But also $\mathrm{Q}=2.333$ or $3 \mathrm{Q}=7$.
- The order of a resonance is defined as ' n ' in $\mathrm{n} \times \mathbf{Q}=$ integer

$Q=3.333$

1st turn

2nd turn

3rd turn

Third order resonant betatron oscillation

$$
3 Q=10, Q=3.333, q=0.333
$$

$\mathrm{Q}=3.333$ in Normalised Phase Space

\checkmark Third order resonance on a normalised phase space plot

Resonant Conditions: A bit more detail

- Synchrotron is periodic focusing system, often made up of smaller periodic regions.
- Can write down a periodic one-turn matrix as

$$
M=I \cos \Delta \phi_{C}+J \sin \Delta \phi_{C} \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad J=\left(\begin{array}{cc}
\alpha(s) & \beta(s) \\
-\gamma(s) & -\alpha(s)
\end{array}\right)
$$

- Tune is defined as the total betatron phase advance in one revolution around the ring, divided by 2π

$$
Q_{x, y}=\frac{\Delta \phi_{x, y}}{\Delta \theta}=\frac{1}{2 \pi} \oint \frac{d s}{\beta_{x, y}(s)}
$$

Resonant Conditions: A bit more detail

- Tunes are both horizontal and vertical.
- Are direct indication of amount of focusing in an accelerator.
- Higher tune means tighter focusing, lower $\left\langle\beta_{x, y}(s)\right\rangle$
- Tunes are critical for accelerator performance
- Linear stability depends upon phase advance.
- Resonant instabilities can occur when $n Q_{x}+m Q_{y}=k$
- Often adjusted using groups of quadrupoles

$$
M_{\text {one-turn }}=I \cos (2 \pi Q)+J \sin (2 \pi Q)
$$

Resonance \& Resonant Conditions

- Resonance can be excited through various imperfections in the beamline.
- The magnets themselves.
- Unwanted higher-order field components in magnets.
- Tilted magnets.
- Experiment solenoids (LHC experiments).
- Aim is to reduce and compensate these effects as much as possible and then find some point in the tune diagramme where the beam is stable.

Machine Imperfections

- It is not possible to construct a perfect machine.
- Magnets can have imperfections.
- The alignment in the machine has non-zero tolerance.
- ...
- So, have to ask:
- What will happen to betatron oscillation due to various field errors.
- Consider errors in dipoles, quadrupoles, sextupoles, etc...
- Study the beam behaviour as a function of ' Q '.
- How is it influenced by these resonant conditions?

Machine Imperfections

- Various imperfections in the beamline will alter the tune in a periodic machine.
- One way to visualize the influence of these imperfections is by looking at what happens in the normalised phase space plot.

Dipole (deflection independent of position)

\checkmark For $Q=2.00$: Oscillation induced by the dipole kick grows on each turn and the particle is lost ($1^{\text {st }}$ order resonance $Q=2$).
\checkmark For $\underline{Q}=2.50$: Oscillation is cancelled out every second turn, and therefore the particle motion is stable.

Quadrupole (deflection \propto position)

\checkmark For $\underline{Q}=2.50$: Oscillation induced by the quadrupole kick grows on each turn and the particle is lost $\left(2^{\text {nd }}\right.$ order resonance $\left.2 Q=5\right)$
\checkmark For $\underline{Q}=2.33$: Oscillation is cancelled out every third turn, and therefore the particle motion is stable.

Sextupole (deflection \propto position ${ }^{2}$)

\checkmark For $\underline{Q}=2.33$: Oscillation induced by the sextupole kick grows on each turn and the particle is lost
($3^{\text {rd }}$ order resonance $3 Q=7$)
\checkmark For $\underline{Q}=2.25$: Oscillation is cancelled out every fourth turn, and therefore the particle motion is stable.

Resonant Condition - Quadrupole

- Let us try to a mathematical expression for amplitude growth in the case with a quadrupole:

$$
\begin{aligned}
& 2 \pi Q=\text { phase angle over } 1 \text { turn }=\theta \\
& \Delta \beta y^{\prime}=\text { kick }
\end{aligned}
$$

a = old amplitude
$\Delta \mathrm{a}=$ change in amplitude
$2 \pi \Delta Q=$ change in phase
y does not change at the kick

$$
y=a \cos (\theta)
$$

$\Delta \widehat{a}=\beta \Delta y^{\prime} \sin (\theta)=I \beta \sin (\theta)$ a $k \cos (\theta)$

Resonant Condition - Quadrupole

- So have:

- Each turn θ advances by $2 \pi Q$
- On the $\mathrm{n}^{\text {th }}$ turn $\theta=\theta+2 \mathrm{n} \pi \mathrm{Q}$
- Over many turns:

This term will be 'zero' as it decomposes in Sin and Cos terms and will give a series of + and - that cancel out in all cases where the fractional tune $q \neq 0.5$

- For $q=0.5$ the phase term, $2(\theta+2 n \pi Q)$ is constant:

$$
\sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))=\infty \quad \text { and thus: } \quad \frac{\Delta a}{a}=\infty
$$

Resonant Condition - Quadrupole

- In this case the amplitude will grow continuously until the particle is lost.
- Therefore, conclude as before that: quadrupoles excite $2^{\text {nd }}$ order resonances for $\mathrm{q}=0.5$
- Namely, for Q = 0.5, 1.5, 2.5, 3.5,...etc......

Resonant Condition - Quadrupole

- Study phase $\theta:$

$2 \pi Q=$ phase angle over 1 turn $=\theta$
$\Delta \beta y^{\prime}=$ kick
a = old amplitude
$\Delta \mathrm{a}=$ change in amplitude
$\underline{2 \pi \Delta Q}=$ change in phase
y does not change at the kick
$\mathrm{y}=\mathrm{a} \cos (\boldsymbol{\theta})$
In a quadrupole $\underline{\Delta y^{\prime}}=\| \mathbf{k y}$
$s=\Delta\left(\beta y^{\prime}\right) \cos \theta$

$$
2 \pi \Delta Q=\frac{\Delta\left(\beta y^{\prime}\right) \cos \theta}{a} \rightarrow \Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}
$$

$2 \pi \Delta Q \ll$ Therefore $\operatorname{Sin}(2 \pi \Delta Q) \approx 2 \pi \Delta Q$

Resonant Condition - Quadrupole

- So have: $\Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}$
- Since: $\operatorname{Cos}^{2}(\theta)=\frac{1}{2} \operatorname{Cos}(2 \theta)+\frac{1}{2}$ can rewrite this as:
$\Delta Q=\frac{1}{4 \pi} \cdot l \cdot \beta \cdot k \cdot(\cos (2 \theta)+1)$, which is correct for the $1^{\text {st }}$ turn
- Each turn θ advances by $2 \pi Q$
- On the $\mathrm{n}^{\text {th }}$ turn $\theta=\theta+2 \mathrm{n} \pi \mathrm{Q}$
- Over many turns:

$$
\Delta Q=\frac{1}{4 \pi} \ell \beta k\left[\sum_{n=1}^{\infty} \cos (2(\theta+2 \pi n Q))+1\right]
$$

- Averaging over many turns: $\Delta Q=\frac{1}{4 \pi} \beta \cdot k \cdot d s$

Resonant Condition - Sextupole

- Can apply the same arguments for a sextupole:
- For a sextupole $\Delta y^{\prime}=\ell k y^{2}$ and thus $\Delta y^{\prime}=\ell k a^{2} \cos ^{2} \theta$
- Get :

$$
\frac{\Delta a}{a}=\ell \beta k a \sin \theta \cos ^{2} \theta=\frac{\ell \beta k a}{2}[\cos 3 \theta+\cos \theta]
$$

- Summing over many turns gives:

- Sextupoles excite $1^{\text {st }}$ and $3^{\text {rd }}$ order resonance

Resonant Condition - Octupole

- Can apply the same arguments for an octupole:
- For an octupole $\Delta y^{\prime}=\ell k y^{3}$ and thus $\Delta y^{\prime}=\ell k a^{3} \cos ^{3} \theta$
- We get : $\frac{\Delta a}{a}=\ell \beta k a^{2} \sin \theta \cos ^{3} \theta$
- Summing over many turns gives:

Amplitude squared

- Octupole errors excite $\underline{2}^{\text {nd }}$ and $4^{\text {th }}$ order resonance and are very important for larger amplitude particles.

Stopband

- The tune does not stay constant in the machine. This leads to a variation of Q for each turn.
- This variation can go up and down, giving a range of possible values for Q, which we can call ΔQ.
- This range of values has a width, which is called the stopband of the resonance.
- Not only do you want to avoid the resonances, but you want to avoid being in the stopband of a resonance as well, as it may pull you into the resonance itself.

Stopband

- $\Delta Q=\frac{1}{4 \pi} \beta . k . d s$which is the expression for the change in \underline{Q} due to a quadrupole... (fortunately !!!)
- But note that Q changes slightly on each turn
- Q has a range of values varying by:

- This width is called the stopband of the resonance.
- So even if q is not exactly 0.5 , it must not be too close, or at some point it will find itself at exactly 0.5 and 'lock on’ to the resonant condition.

Intermediate Summary

- Quadrupoles excite $\underline{2}^{\text {nd }}$ order resonances.
- Sextupoles excite $1^{\text {st }}$ and $3^{\text {rd }}$ order resonances.
- Octupoles excite $\underline{2}^{\text {nd }}$ and $\underline{4}^{\text {th }}$ order resonances.
- This is true for small amplitude particles and low strength excitations.
- However, for stronger excitations, sextupoles will excite higher order resonances (non-linear).

Coupling

- Coupling is a phenomena that converts betatron motion in one plane (horizontal or vertical) into motion in the other plane.
- Fields that will excite coupling are:
- Skew quadrupoles, which are normal quadrupoles, but tilted by 45 about their longitudinal axis.
- Solenoidal (longitudinal magnetic field).

Skew Quadrupole

Solenoid - Longitudinal Field (1)

Solenoid - Longitudinal Field (2)

Above:
The LPI solenoid that was used for the initial focusing of the positrons. It was pulsed with a current of 6 kA for some $7 \mu \mathrm{~s}$, it produced a longitudinal magnetic field of 1.5 T .

At right:
the somewhat bigger CMS solenoid

Coupling and Resonance

- This coupling means that one can transfer oscillation energy from one transverse plane to the other.
- Exactly as for linear resonances (single particle) there are resonant conditions.

$$
n Q_{h} \pm m Q_{v}=\text { integer }
$$

- If meet one of these conditions, the transverse oscillation amplitude will again grow in an uncontrolled way.

General Tune Diagramme

Resonant Conditions

- Change in tune or phase advance resulting from errors.
- Steer Q away from certain fractional values which can cause motion to resonate and result in beam loss.
- Resonance takes over and walks proton out of the beam for:

$$
l Q_{h}+m Q_{v}=p
$$

where

$$
|l|+|m|
$$

is resonance order and p is azimuthal frequency that drives it.

SPS Working Diagramme

PS Booster Tune Diagramme

Imperfection: Closed-orbit Distortion

- As current is slowly raised in dipole:
- The zero-amplitude betatron particle follows distorted orbit.
- Distorted orbit is closed.
- Particle still obeys Hill's Equation.
- Except at the kink (dipole) it follows a betatron oscillation.
- Other particles with finite amplitudes oscillate about this new closed orbit.

Sources of Closed-orbit Distortion

Δy

Δ

Type of element	Source of kick	r.m.s. value	$\langle\Delta B l /(B \rho)\rangle_{\mathrm{rms}}$	Plane
Gradient magnet	Displacement	$\langle\Delta y\rangle$	$k_{i} l_{i}\langle\Delta y\rangle$	x, z
Bending magnet (bending angle $\left.=\theta_{i}\right)$	Tilt	$\langle\Delta\rangle$	$\theta_{i}\langle\Delta\rangle$	z
Bending magnet	Field error	$\langle\Delta B / B\rangle$	$\theta_{i}\langle\Delta B / B\rangle$	x
Straight sections (length $\left.=d_{i}\right)$	Stray field	$\left\langle\Delta B_{\mathrm{s}}\right\rangle$	$d_{i}\left\langle\Delta B_{\mathrm{s}}\right\rangle /(B \rho)_{\text {inj }}$	x, z

Imperfection: Chromaticity

- The focusing in a machine (and thus tune) depends on the momentum.
- The variation of the tune with momentum offset ($\delta \stackrel{\text { def }}{=} \Delta p / p_{0}$) is called chromaticity.
- Inserting a momentum perturbation is akin to adding a bit of extra focusing to the one-turn matrix which depends on the unperturbed focusing, K_{0}.

$$
\begin{gathered}
M_{\text {one turn }}(\delta)=\left(\begin{array}{cc}
1 & 0 \\
K_{0} \delta d s & 1
\end{array}\right)\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha \sin (2 \pi Q) & \beta \sin (2 \pi Q) \\
-\gamma \sin (2 \pi Q) & \cos (2 \pi Q)-\alpha \sin (2 \pi Q)
\end{array}\right) \\
M_{\text {one turn }}(\delta)=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha \sin (2 \pi Q) & \beta \sin (2 \pi Q) \\
-\gamma \sin (2 \pi Q)+K_{0} \delta[\cos (2 \pi Q)+\alpha \sin (2 \pi Q)] d s & \cos (2 \pi Q)-\alpha \sin (2 \pi Q)+K_{0} \delta \beta \sin (2 \pi Q) d s
\end{array}\right)
\end{gathered}
$$

- The trace is related to the new tune:
$\cos \left(2 \pi Q_{\text {new }}\right)=\frac{1}{2} \operatorname{Tr} M=\cos (2 \pi Q)+\frac{K_{0} \delta}{2} \beta \sin (2 \pi Q) d s$

Chromaticity and Tune

- Going through a bit of math:
$\cos \left(2 \pi Q_{\text {new }}\right)=\frac{1}{2} \operatorname{Tr} M=\cos (2 \pi Q)+\frac{K_{0} \delta}{2} \beta \sin (2 \pi Q) d s$
$\cos \left(2 \pi Q_{\text {new }}\right)=\cos (2 \pi(Q+d Q)) \approx \cos (2 \pi Q)-2 \pi \sin (2 \pi Q) d Q$
- Last two terms must be equal, therefore

$$
\left.d Q=-\frac{K(s) \delta}{4 \pi} \beta(s) d s \text { Integrate around ing }\right\rangle \begin{gathered}
\Delta Q=-\frac{\delta}{4 \pi} \oint K(s) \beta(s) d s \\
\text { Total change in tune }
\end{gathered}
$$

- The tune will always have a bit of a spread due to the momentum spread. You can define the natural chromaticity

$$
\xi_{N} \equiv\left(\frac{\Delta Q}{Q}\right) /\left(\frac{\Delta p}{p_{0}}\right)=-\frac{1}{4 \pi Q} \oint K(s) \beta(s) d s \approx-1.3 Q
$$

Measurement of Chromaticity

- Steering the beam to a new mean radius, and adjusting the RF frequency to vary the momentum, can measure the Q.

Chromaticity Correction

- Need a way to connect the momentum offset, δ, to focusing.
- We can do this using sextupoles, which give nonlinear focusing (dependent on position) and dispersion (momentum-dependent position).

Dispersion (1)

- Dispersion, $\mathrm{D}(\mathrm{s})$, is defined as the change in particle position with fractional momentum offset, δ.
- Originates from momentum dependence of dipole bends.
- Add explicit momentum dependence to EOM: $x^{\prime \prime}+K(s) x=\frac{\delta}{\rho(s)}$

$$
\begin{array}{rlrl}
x(s) & =C(s) x_{0}+S(s) x_{0}^{\prime}+D(s) \delta_{0} & D(s)=S(s) \int_{0}^{s} \frac{C(\tau)}{\rho(\tau)} d \tau-C(s) \int_{0}^{s} \frac{S(\tau)}{\rho(\tau)} d \tau \\
x^{\prime}(s)=C^{\prime}(s) x_{0}+S^{\prime}(s) x_{0}^{\prime}+D^{\prime}(s) \delta_{0} & \text { Particular sol'n inhomog. DE w/ periodic } \rho(\mathrm{s}) .
\end{array}
$$

- The trajectory has two parts: $x(s)=$ betatron $+\eta_{x}(s) \delta$

$$
\eta_{x}(s) \equiv \frac{d x}{d \delta}
$$

$$
\left(\begin{array}{l}
x(s) \\
x^{\prime}(s) \\
\delta(s)
\end{array}\right)=\left(\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)
$$

Dispersion (2)

- Noting that dispersion is periodic $\eta_{x}(s+C)=\eta_{x}(s)$

$$
\left(\begin{array}{c}
\eta_{x}(s) \\
\eta_{x}^{\prime}(s) \\
\delta(s)
\end{array}\right)=\left(\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\eta_{x}(s) \\
\eta_{x}^{\prime}(s) \\
\delta_{0}
\end{array}\right)
$$

- In an achromat, $\mathrm{D}=\mathrm{D}^{\prime}=0$. If we let $\delta_{0}=0$ we can simplify the process and solve to find

$$
\begin{aligned}
& \binom{\eta_{x}(s)}{\eta_{x}^{\prime}(s)}=\left(\begin{array}{cc}
C(s) & S(s) \\
C^{\prime}(s) & S^{\prime}(S)
\end{array}\right)\binom{\eta_{x}(s)}{\eta_{x}^{\prime}(s)}+\binom{D(s)}{D^{\prime}(s)}=M\binom{\eta_{x}(s)}{\eta_{x}^{\prime}(s)}+\binom{D(s)}{D^{\prime}(s)} \\
& (I-M)\binom{\eta_{x}(s)}{\eta_{x}^{\prime}(s)}=\binom{D(s)}{D^{\prime}(s)} \Rightarrow\binom{\eta_{x}(s)}{\eta_{x}^{\prime}(s)}=(I-M)^{-1}\binom{D(s)}{D^{\prime}(s)}
\end{aligned}
$$

- Solving gives

$$
\begin{aligned}
\eta(s) & =\frac{\left[1-S^{\prime}(s)\right] D(s)+S(s) D^{\prime}(s)}{2(1-\cos \Delta \phi)} \\
\eta^{\prime}(s) & =\frac{[1-C(s)] D^{\prime}(s)+C^{\prime}(s) D(s)}{2(1-\cos \Delta \phi)}
\end{aligned}
$$

Chromaticity Correction

- Recall that we define the natural chromaticity as

$$
\xi_{N} \equiv\left(\frac{\Delta Q}{Q}\right) /\left(\frac{\Delta p}{p_{0}}\right)=-\frac{1}{4 \pi Q} \oint K(s) \beta(s) d s
$$

- And that the trajectory goes as

$$
x(s)=x_{\text {betatron }}(s)+\eta_{x}(s) \delta
$$

- If we describe the sextupole B field as $B_{y}=b_{2} x^{2}$, we can then break it down as

$$
B_{y}(\text { sext })=b_{2}\left[x_{\text {betatron }}(s)+\eta_{x}(s) \delta\right]^{2} \approx \underbrace{b_{2} x_{\text {betatron }}^{2}}_{\text {Nonlinear }}+\underbrace{2 b_{2}}_{\text {Like quad: } \mathrm{K}(\mathrm{~s})} x_{\text {betatron }}(s) \eta_{x}(s) \delta_{j}
$$

- You end up getting a total chromaticity from all sources as

$$
\xi=-\frac{1}{4 \pi Q} \oint\left[K(s)-b_{2}(s) \eta_{x}(s)\right] d s
$$

Chromaticity Correction

Final "corrected" By

$B y=K s . x^{2}$

- Sextupole field acts to increase the quadrupole magnetic field for particles that have a positive displacement and decrease the field for particles with negative displacements.

Chromaticity Correction

Final "corrected" By

$B y=K s . x^{2}$

- Since dispersion describes how momentum changes radial position of the particles, sextupoles will alter focusing field seen by the particles as a function of momentum.

Sextupoles \& Chromaticity

- There are two chromaticities ξ_{h}, ξ_{v}
- However, the effect of a sextupole depends on $\beta(\mathrm{s})$ and this varies around the machine.
- Two types of sextupoles are used to correct the chromaticity.
- One (SF) is placed near QF quadrupoles where β_{h} is large and β_{v} is small, this will have a large effect on ξ_{h}
- Another (SD) placed near QD quadrupoles, where β_{v} is large and β_{h} is small, will correct ξ_{v}
- Sextupoles should be placed where $D(s)$ is large, in order to increase their effect, since Δk is proportional to $D(s)$.

Bibliography

- M. H. Blewett, Theoretical Aspects of the Behaviour of Beams in Accelerators and Storage Rings (CERN Yellow Report, 1977)
- S. Y. Lee - Accelerator Physics (World Scientific, 2011)
- H. Wiedemann - Particle Accelerator Physics (Springer-Verlag, 2007)
- E. Wilson - An Introduction to Particle Accelerators (Oxford University Press, 2001)

