Hamiltonian Dynamics Problem Sheet

David Kelliher

December 2nd, 2021

Problem 1. Hamilton's canonical equations are given by

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

Apply the equations to the following two Hamiltonians:

$$
\begin{gathered}
H\left(x, y, p_{x}, p_{y} ; t\right)=x p_{y}+y p_{x}^{2}+p_{x} p_{y} \\
H\left(r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi} ; t\right)=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\theta}^{2}}{r^{2} \sin ^{2} \theta}\right)+V(r)
\end{gathered}
$$

Problem 2. A double pendulum is formed by joining one pendulum to another (Fig. 1). Consider a double pendulum with masses m_{1} and m_{2} attached by wires of length l_{1} and l_{2}, respectively. Define the angles made by the two wires with the vertical as θ_{1} and θ_{2}, respectively.

- Write down the Lagrangian, $\mathrm{L}=\mathrm{T}-\mathrm{V}$.
- Find the canonical momenta $\left(p_{\theta_{1}}, p_{\theta_{2}}\right)$.
- Bonus question - write down the Hamiltonian for the system (noting $H=\sum_{i=1}^{2} \dot{\theta}_{i} p_{\theta_{i}}-L$).

Problem 3. Show that the transformation from action angle coordinates to (q, p) as follows

$$
\begin{equation*}
q(I, \phi)=\sqrt{2 I} \sin \phi, p(I, \phi)=\sqrt{2 I} \cos \phi \tag{1}
\end{equation*}
$$

is a canonical transformation (recall for a canonical transformation the Poisson bracket must satisfy $[q, p]_{\phi, I}=$ 1)). Show that the generating function

$$
\begin{equation*}
F_{3}(p, \phi)=\frac{p^{2}}{2} \tan \phi \tag{2}
\end{equation*}
$$

effects the same coordinate transformation as Eqn. 1.
Problem 4. The leapfrog (or velocity Verlet) algorithm is given by

$$
\begin{array}{r}
v_{n+1 / 2}=v_{n}+\frac{1}{2} h F\left(x_{n}\right), \\
x_{n+1}=x_{n}+h v_{n+1 / 2}, \\
v_{n+1}=v_{n+1 / 2}+\frac{1}{2} h F\left(x_{n+1}\right) . \tag{5}
\end{array}
$$

where $x_{n}, v_{n}, F\left(x_{n}\right)$ are position, velocity and force at step n while h is the step length. Show that the algorithm is symplectic

Problem 5. (i) Starting with the vector potential for a multipole magnet

$$
\begin{equation*}
A_{x}=0, \quad A_{z}=0, \quad A_{l}=-\mathcal{R} \sum_{n=1}^{\infty}\left(b_{n}+i a_{n}\right) \frac{(x+i z)^{n}}{n r_{0}^{n-1}} \tag{6}
\end{equation*}
$$

Figure 1: Double pendulum
find the Hamiltonian for a sextupole ($\mathrm{n}=3$) assuming small dynamic variables. We assume a normal sextupole (i.e. the skew term $a_{3}=0$). The strength parameter b_{n} is given by

$$
\begin{equation*}
b_{n}=\frac{1}{(n-1)!} \frac{\delta^{n-1} B_{y}}{\delta x^{n-1}} \tag{7}
\end{equation*}
$$

Note, one may follow the procedure used to calculate the quadrupole Hamiltonian in the lecture slides.
(ii) Given the generator f

$$
\begin{equation*}
f=-(L / 2)\left(p_{x}^{2}+p_{z}^{2}\right) \tag{8}
\end{equation*}
$$

calculate : $f: y$ setting y to each of the transverse phase space variables $\left(x, z, p_{x}, p_{z}\right)$ to show that f is the generator for a drift space (recall that the Lie operation : $f: y$ is equal to the Poisson bracket $[f, y]$).

