Tutorial questions on synchrotron radiation

For the tutorial, below are four questions on synchrotron radiation. Each question relates to one of the four lectures, and in each case consists of several parts. The theory needed to answer the questions should be contained within the relevant lecture notes, however, please let me know if you have problems.

For those of you who are required to submit answers for marking, please email me your solutions to <u>ian.martin@diamond.ac.uk</u> before the start of the tutorial (i.e. before 14:00 on 02/12/2020).

lan Martin (25/11/2021)

Q1) Consider an electron storage ring, with energy 2.7 GeV, average current 300 mA and a bend radius of $\rho = 7.8$ m.

- a) What are the instantaneous radiated power and energy loss per turn for a single electron travelling through the bending magnet [4 marks]?
- b) What is the average power lost by the electron beam that must be replaced by the RF cavities [2 marks]?
- c) What is the critical photon energy for the bending magnet radiation [2 marks]?
- d) What would be the energy loss per turn if the ring contained protons instead of electrons [2 marks]?

Q2) An undulator of length L = 2.0 m, period λ_u = 20.0 mm and peak-field B_0 = 1.15 T is installed into a 3.5 GeV electron storage ring.

- a) Starting from the Lorentz Force and assuming a magnetic field variation of the form $B_y(z) = B_0 \sin(k_u z)$, use the electron equations of motion to show that the fundamental, on-axis resonant wavelength of the radiation will be $\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right)$, where $K = \frac{eB_0\lambda_u}{2\pi m_c c}$ [5 marks]
- b) Calculate the corresponding photon energy and linewidth for the first harmonic [2 marks]
- c) Calculate the vertical tune-shift assuming a 1.5 m average vertical beta function at the insertion device [3 marks].

Q3) A 5 GeV damping ring with circumference 3 km is being designed for a linear collider. The main goal of the damping ring is to reduce the vertical emittance from its initial value of 2 μ m.rad to a final value of 10 pm.rad. The repetition rate of the damping ring is 5 Hz.

- a) By considering the amount of time the electrons are in the damping ring, what damping time would be required if the desired final emittance is to be achieved [2 marks]?
- b) If the dipole field is 0.3 Tesla, what is the energy loss per turn [3 marks]?
- c) Given this energy loss per turn, what is the actual damping time of the ring [2 marks]?
- d) If the desired final emittance is to be achieved, what does the energy loss per turn need to be [2 marks]?
- e) If the additional energy loss per turn is to be provided by damping wigglers, what does the additional contribution to the 2nd synchrotron radiation integral (ΔI_2) need to be [3 marks]?
- f) Assuming a peak field of 1.4 Tesla in the damping wigglers, what total length of wiggler would be required [3 marks]?

Q4) For a 2.5 GeV double-bend achromat electron storage ring consisting of 12 cells and with a dipole field of 0.8 Tesla, calculate the following:

- a) Bend radius for the electrons [2 marks]
- b) Instantaneous power radiated by a single electron [2 marks]
- c) Mean photon energy [2 marks]
- d) Total number of photons emitted per second, on average. [2 marks]
- e) Equilibrium vertical emittance for the electron beam (assuming a constant vertical beta function $\beta_v = 10 m$) [4 marks]
- f) The theoretical minimum emittance assuming $J_x = 1$ and that the ring is tuned for achromatic conditions [3 marks]

Fundamental Constants

Speed of light	= 299792458 m/s
π	= 3.141593
Permittivity of free space (ϵ_0)	= 8.854187E-12
Electron mass (m _e)	= 9.10938E-31 kg (510.999 keV/c ²)
Proton mass (m _e)	= 1.6726E-27 kg (938.28 MeV/c ²)
Electron charge	= 1.602176E-19 C
Classical electron radius	= 2.8179403E-15 m (e^2/4/pi/ε ₀ /m _e /c^2)
Reduced Planks constant (ħ)	= 1.054571e-34