Accelerator Physics Exercises No. 4

- Answers to be handed in on 25 November 2021

Question 4.1

Show that the RF power loss in the conducting walls of a cavity is given by the relation

$$\frac{R_{surf}}{2} \int_{S} |H|^2 ds$$

where R_{surf} is the surface resistance and S is the inner surface of the structure.

Question 4.2

Assuming a simple pill-box cavity, show that the Quality Factor is related to the surface S, volume V and skin depth δ

$$\frac{2}{\delta}K\frac{V}{S}$$

where K is a form factor.

Question 4.3

A new 50 GeV (kinetic energy) proton synchrotron, the PS2 accelerator, has been proposed to replace the CERN PS. The new PS2 will be in a new ring tunnel of mean radius 215 m. and will receive an injected beam at 4 GeV (kinetic energy) from a new linear accelerator - the Superconducting Proton Linac (SPL). The 1.8 T magnetic field of the bending magnets is excited by a sine wave oscillating between injection and top energy at a frequency of 0.3 Hz. Given that the mass of the proton is 0.9383 GeV:

- a) What is the revolution frequency at 4 GeV, 20 GeV and 50 GeV?
- **b**) Assuming the revolution frequency at 20 GeV, calculate the voltage per turn necessary to match the maximum rate of the rise of the field.
- c) If $\sin \phi_s = \sin 60^\circ$, what is the peak voltage necessary in the cavity? Note that ϕ_s =0 corresponds to the zero crossing of the accelerating voltage and the particle is not accelerated.
- **d**) Given a harmonic number of 32, what are the RF frequencies at 4 GeV and 50 GeV for ϕ_s =0?

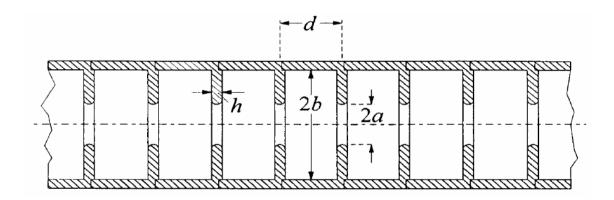
Question 4.4

Design a pill-box cavity 50 cm. long for a representative 10 MHz frequency for the PS2 accelerator. What is the resonant frequency for the next highest mode (TM₀₁₁) in the cavity? What is the transit-time factor for protons of 4 GeV (kinetic energy) for the PS2 accelerator?

Question 4.5

How strong must the electric field intensity of a travelling plane wave be to accelerate electrons with an energy gradient of 10 MeV/m? (Hint: Use the Poynting vector).

Question 4.6


The SLAC accelerating linac structure has the design shown in the figure below with the following dimensions:

2b = 82.474 mm.

2a = 22.606 mm.

h = 5.842 mm.

d = 35.001 mm.

Assuming that the cavities are operated in the $2\pi/3$ mode with a phase velocity $\beta_z = 1$ and a supplied power of 35 MW, what is the total accelerating voltage and energy gain per metre for a SLAC structure of length l = 3 m.?