

Lecture 24

Future Circular Collider (FCC-ee) JAI Student Design Project 2021-2022

Professor Emmanuel Tsesmelis Principal Physicist, CERN Department of Physics, University of Oxford

Accelerator Physics Graduate Course John Adams Institute for Accelerator Science 25 November 2021

CERN Scientific Priorities for the Future

- Implementation of the recommendations of the 2020 Update of the European Strategy for Particle Physics:
- Fully exploit the HL-LHC.
- Build a Higgs factory to further understand this unique particle.
- Investigate the technical and financial feasibility of a future energy-frontier 100 km collider at CERN.
- Ramp up relevant R&D.
- Continue supporting other projects around the world.

Future Circular Collider Study Launched in 2014

X

International FCC collaboration (CERN as host lab) to study:

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
 - 80-100 km infrastructure in Geneva area
 - ~16 T \Rightarrow 100 TeV *pp* in 100 km
- e+e collider (FCC-ee) as a first step
- *p-e (FCC-he)* option,
 HE-LHC ...

The FCC Integrated Programme Inspired by Successful LEP – LHC programmes at CERN

- **Comprehensive cost-effective program maximizing physics opportunities**
- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & and top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Complementary physics
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC

□ Great energy range for the SM heavy particles + highest luminosities + √s precision

P. Janot

Physics Opportunities with FCC-hh

 With 30 ab⁻¹ (a) 100 TeV in 25 years 2×10¹⁰ Higgs bosons (180 × HL-LHC) 2×10⁷ Higgs pairs, 10⁸ ttH events 10¹² top pairs (300 × HL-LHC) 5×10¹³ W, 10¹³ Z (70 × HL-LHC) 10⁵ gluino pairs im m_{gluino} ~ 8 TeV 	 High precision study of H and top Exploration of EWSB in all details Higgs self-coupling to 2-3% Rare or BSM decays BR(H → invisible) to 2.5×10⁻⁴ (DM!) 9_{Hµµ} 9_{Hyy} 9_{HZy} to 0.5% FCC-ee standard candle essential
 Sensitivity to heavy new physics With indirect precision probes e.g., with cross-section ratios e.g., with high-p_T final states Trade statistics for systematics Further improved by FCC-ee synergies High-energy phenomena (VBS, DY) 	 Direct particle observation Mass reach enhanced by ~5 wrt LHC New gauge bosons up to 40 TeV Strongly interacting particles up to 15 TeV Natural SUSY up to 5-20 TeV Dark matter up to 1.5-5 TeV Possibility to find or rule out thermal WIMPs as Dark Matter candidates

FUTURE

CIRCULAR COLLIDER

- Common footprint with FCC-hh, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- 2 IPs, large horizontal crossing angle 30 mrad, crab-waist collision optics(alternative layouts with 4 IPs under study now)
- Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity Requires **booster synchrotron in collider tunnel**

FCC-ee Collider Parameters (Stage 1)

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee Design Concept

X

based on lessons and techniques from past colliders (last 40 years)

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection

DAFNE: crab waist, double ring

S-KEKB: low β_v^* , crab waist

LEP: high energy, SR effects

VEPP-4M, LEP: precision E calibration

KEKB: *e*⁺ source

HERA, LEP, RHIC: spin gymnastics

combining successful ingredients of several recent colliders → highest luminosities & energies

FUTURE

CIRCULAR COLLIDER

FCC-ee RF Staging Scenario

time (operation years)

FUTURE

CIRCULAR COLLIDER

Future Circular Collider Feasibility Study Emmanuel Tsesmelis

FCC-ee Figures of Merit

Luminosity vs. capital cost

FUTURE

CIRCULAR COLLIDER

- for the H running, with 5 ab⁻¹ accumulated over 3 years and 10⁶ H produced, the total investment cost (~10 BCHF) corresponds to → 10 kCHF per produced Higgs boson
- for the Z running with 150 ab⁻¹ accumulated over 4 years and 5x10¹² Z produced, the total investment cost corresponds to → 10 kCHF per 5×10⁶ Z bosons

This it the number of Z bosons collected by each experiment during the entire LEP programme !

Capital cost per luminosity dramatically decreased compared with LEP !

CERN

Luminosity vs. electricity consumption

Highest lumi/power of all H fact proposals Electricity cost ~200 CHF per Higgs boson

SuperKEKB – Pushing Luminosity and β*

<u>Design</u>: double ring e⁺e⁻ collider as *B*-factory at 7(e⁻) & 4(e⁺) GeV; design luminosity ~8 x 10³⁵ cm⁻²s⁻¹; $\beta_y^* \sim 0.3$ mm; nano-beam – large crossing angle collision scheme (crab waist w/o sextupoles); beam lifetime ~5 minutes; top-up injection; e⁺ rate up to ~ 2.5 10¹² /s ; under commissioning

Future Circular Collider Feasibility Study Emmanuel Tsesmelis

NSLS-II, EIC & FCC-ee beam parameters

	NSLS-II	EIC	FCC-ee-Z	
Beam energy [GeV]	3	10 (20)	45.6	
Bunch population [10 ¹¹]	80.0	1.7	1.7	
Bunch spacing [ns]	2	10	15, 17.5 or 20	
Rms bunch length [mm]	4.5 - 9	2	3.5 (SR)	
Beam current [A]	0.5	2.5 (0.27)	1.39	
RF frequency [MHz]	500	591	400	

Similarity of several parameters strongly suggests collaboration to exploit synergies in areas such as beam instrumentation, SRF, vacuum system with SR handling, etc.

CIRCULAR Prototypes of FCC-ee Low-power Magnets

Twin-dipole design with 2× power saving 16 MW (at 175 GeV), with Al busbars

1.0 T

Twin F/D arc quad design with 2× power saving 25 MW (at 175 GeV), with Cu conductor

CERN

Future Circular Collider Feasibility Study Emmanuel Tsesmelis

- dual aperture superconducting magnets
- two high-luminosity experiments (A & G)
- two other experiments (L & B) combined with injection upstream of experiments
- two collimation insertions
 - betatron cleaning (J)
 - momentum cleaning (F)
- extraction/dump insertion (D)
- RF insertion (H)
- Injection from LHC (~3 TeV) or scSPS (~1.2 TeV)
- Alternative layouts under study

FUTURE

COLLIDER

FCC-hh (pp) Collider Parameters (Stage 2)

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	1	00	14	14
dipole field [T]	16		8.33	8.33
circumference [km]	97	.75	26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

FCC-hh: Highest Collision Energies

from LHC technology 8.3 T NbTi dipole

via HL-LHC technology . 12 T Nb₃Sn quadrupole

- order of magnitude performance increase in both energy & luminosity
- 100 TeV cm collision energy (vs 14 TeV for LHC)
- 20 ab⁻¹ per experiment collected over
 25 years of operation (vs 3 ab⁻¹ for LHC)
- similar performance increase as from Tevatron to LHC

key technology: high-field magnets

FNAL dipole demonstrator 14.5 T Nb₃Sn

World-wide FCC Nb₃Sn Programme

3150 mm²

~10% margin

FCC ultimate

Main development goal is wire performance increase:

- J_c (16T, 4.2K) > 1500 A/mm² \rightarrow 50% increase wrt HL-LHC wire
- Reduction of coil & magnet cross-section

FUTURE

CIRCULAR COLLIDER

After 1-2 years development, prototype Nb₃Sn wires from several new industrial FCC partners already achieve HL-LHC J_c performance

Future Circular Collider Feasibility Study Emmanuel Tsesmelis

FCC conductor development collaboration:

• Bochvar Institute (production at TVEL), Russia

5400 mm²

~1.7 times less SC

• Bruker, Germany, Luvata Pori, Finland

~10% margin

HL-LHC

- KEK (Jastec and Furukawa), Japan
- KAT, Korea, Columbus, Italy
- University of Geneva, Switzerland
- Technical University of Vienna, Austria
- SPIN, Italy, University of Freiberg, Germany

2019/20 results from US, meeting FCC J_c specs:

- **Florida State University:** high-J_c Nb₃Sn via Hf addition
- **Hyper Tech /Ohio SU/FNAL**: high-J_c Nb₃Sn via artificial pinning centres based on Zr oxide.

CIRCULAR 16 T Dipole Design Activities and Options

Emmanuel Tsesmelis

Short model magnets (1.5 m lengths) will be built until 2025

Ð

FUTURE CIRCULAR US – MDP: 14.5 T Magnet Tested at FNAL

(CRN)

- 15 T dipole demonstrator
- Staged approach: In first step prestressed for 14 T
- Second test in June 2020 with additional pre-stress reached 14.5 T

High Field Magnet Programme Goals until 2027

FCC Implementation - Footprint Baseline

- Present baseline position was established considering:
- lowest risk for construction, fastest and cheapest construction
- Molasse rock preferred for tunnelling, avoid limestone with karstic structures
- 90 100 km circumference
- 12 surface sites with few ha area each

UTURE

CIRCULAR

COLLIDER

æ

Civil Engineering Construction Schedule

- Total construction duration 7 years
- First sectors ready after 4.5 years

per tratación parte en parte en las terres dans comos de los ques como momento maior a maio, compresentementos

FCC Integrated Project Technical Schedule

Ð

34 35 36 37 38 39 40 41 42 43 ~25 years operation 15 years operation

FCC CDR and Study Documentation

- FCC-Conceptual Design Reports:
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJC 79, 6 (2019) 474, EPJST 228, 2 (2019) 261-623,

EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

- Summary documents provided to EPPSU SG
 - FCC-integral, FCC-ee, FCC-hh, HE-LHC
 - Accessible on http://fcc-cdr.web.cern.ch/

FCC Feasibility Study

FCC Feasibility Study

FCC Feasibility Study (FS) will address a recommendation of the 2020 update of the European Strategy for Particle Physics (ESPP):

- "Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.
- Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

by the European Strategy Group

High-level Goals of Feasibility Study

High-level goals of Feasibility Study

- optimisation of placement and layout of the ring and related infrastructure, and demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval, with a focus on identifying and surmounting possible showstoppers;
- optimisation of the design of the colliders and their injector chains, supported by targeted R&D to develop the needed key technologies;
- development and documentation of the main components of the technical infrastructure;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, environmental aspects and energy efficiency;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project;
- consolidation of the physics case and detector concepts for both colliders.

lastructures

Physics Cases

Feasibility Study Timeline

CFRN

FCC Roadmap Towards Stage 1

- An overall layout and placement optimisation process across both host states that follows the "avoid-reducecompensate" directive according to European and French regulatory frameworks.
- Process integrates a diverse set of requirements and constraints, such as
 - performance for the scientific research to be competitive at international scale
 - civil engineering technical feasibility and subsurface constraints
 - territorial constraints at surface and subsurface
 - nature, accessibility, technical infrastructure and resource needs and constraints
 - economic factors including the development of benefits for and synergies with the regional developments
- Work takes place as a collaborative effort by technical experts at CERN, consultancy companies and government notified bodies

JAI Training

Foundation of the JAI Programme

Accelerator Design Project 2017-2018

- Accelerator Design Studies for the High-Energy LHC (HE-LHC) for 2017-2018
 - The aim of the 2017-2018 JAI student project work was to prepare a design for HE-LHC.
 - Design work consisted of study of the lattice, magnet systems and RF cavities.
 - Student presentations made at CERN in June 2018 (together with visits to accelerator facilities).

HE-LHC Student Poster at FCC Week Amsterdam, April 2018

London

OXFORD

Accelerator Design Project 2018-2019

- Accelerator Design Studies for the Superconducting SPS (scSPS) for 2018-2019
 - The aim of the 2018-2019 JAI student project work was to prepare a design for the scSPS.
 - Design work consisted of study of the lattice, magnet systems and RF cavities.
 - Student presentations made at JAI Advisory Board in April 2019 and at CERN in June 2019 (together with visits to accelerator facilities).

cds.cern.ch

London

Royal Holloway

UNIVERSITY OF

- Accelerator Design Studies for the Muon Collider for 2019-2020
 - The aim of last year's JAI student project work was to prepare a design for the 3 TeV RCS for Muon Acceleration in the SPS tunnel.
 - Design work consisted of study of the lattice, magnet systems and RF cavities.
 - Student presentation as a JAI
 Seminar. (Due to COVID-19 pandemic, presentations to JAI
 Advisory Board and at CERN
 were not possible).

A Design for a 3 TeV Rapid Cycling Synchrotron for Muon Acceleration in the SPS Tunnel

First Year Design Project

T. Dascalau, J. Flowerdew, P. Griffin-Hicks, A. Hughes, C. A. Mussolini, C. Pakuza, M. Topp-Mugglestone, W. Wang, L. Wroe

John Adams Institute for Accelerator Science

JAI Student Design Project Publication cds.cern.ch

Accelerator Design Project

- Accelerator Design Study for
 - Electron SPS: 2020-2021
 - Design work consisted of study of the lattice, magnet systems and RF cavities.
- Student visits and presentations at CERN delayed due to Covid-19.

"The design project significantly contributes to the value of a PhD at the JAI, and is a very effective learning tool ... it played an essential role in helping me to find a postdoc."

"To me, the design project was by far the best part of the course. It puts the material taught into context and bridges the gap between lectures ... and a DPhil project"

Majid Ali & Robert Murphy Rogal Helloway, University of London Emily Archer, Pablo Arrita, Joseph Bateman & Cameron Robertson University of Oxford Roberca Taylor Insperial College London 20th March 2021

36

- Optics Studies
 - Study various lattice options.
- Magnet Design
 - Optimise dipole and quadrupole magnets.
- RF System
 - Design RF system.
- Overall parameter tables and sub-system inventory

Thank you