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Group Velocity

❑ Energy (and 

information) travel 

with wave group 

velocity.

❑ Interference of two 

continuous waves of 

slightly different 

frequencies 

described by:
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Group Velocity

❑ Mean wavenumber & frequency represented by continuous wave

❑ Any given phase in this wave is propagated such that kx – ωt remains 
constant.

❑ Phase velocity of wave is thus

❑ Envelope of pattern described by

❑ Any point in the envelope propagates such that x dt – t dω remains 
constant and its velocity, i.e. group velocity, is
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Dispersion Diagramme for Waveguide

❑Description of wave propagation down a 

waveguide by plotting graph of frequency, ω, 

against wavenumber, k = 2π/λ

❑ Imagine experiment in which signals of different 

frequencies are injected down a waveguide and 

the wavelength of the modes transmitted are 

measured.

❑Measurables

❑Phase velocity for given frequency: ω/k

❑Group velocity: slope of tangent



Dispersion Diagramme for Waveguide

❑Observations
❑However small the k, 

the frequency is always 
greater than the cut-off 
frequency.

❑The longer the 
wavelength or lower 
the frequency, the 
slower is the group 
velocity.

❑At cut-off frequency, no 
energy flows along the 
waveguide.

❑Also 

Dispersion diagramme for waveguide

is the hyperbola
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Iris-loaded Structures

◼ Acceleration in a 
waveguide is not possible 
as the phase velocity of 
the wave exceeds that of 
light.
❑ Particles, which are 

travelling slower, undergo 
acceleration from the 
passing wave for half the 
period but then experience 
an equal deceleration.

❑ Averaged over long time 
interval results in no net 
transfer of energy to the 
particles.

•Need to modify waveguide to reduce

phase velocity to match that of the particle

(less than speed of light).

•Install iris-shaped screens with a constant

separation in the waveguide. 



Iris-loaded Structures

◼ Recall that the 
dispersion relation in 
a waveguide is

◼ With the installation of 
irises, curve flattens 
off and crosses 
boundary at vφ=c at 

kz=π/2
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With suitable choice of iris separation

d the phase velocity can be set to

any value



Iris-loaded Structures

❑Waveguides cannot 
be used for sustained 
acceleration as all 
points on dispersion 
curve lie above 
diagonal in dispersion 
diagramme.
❑Phase velocity > c

❑An iris-loaded 
structure slows down 
the phase velocity.

Dispersion diagramme

for a loaded waveguide
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The k-value for each space harmonic is

By choosing any frequency in dispersion

diagramme it will intercept dispersion curve

at k values spaced by 2nπ/d

First rising slope used for acceleration.



Resonant Cavities

◼ General solution of wave equation

❑ Describes sum of two waves – one moving in one 
direction and another in opposite direction

◼ If wave is totally reflected at surface then both 
amplitudes are the same, A=B, and

❑ Describes field configuration which has a static 
amplitude 2Acos(k·r), i.e. a standing wave. 
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Resonant Cavities

◼ Resonant Wavelengths
❑ Stable standing wave forms in fully-closed cavity if

◼ where l = distance between entrance and exit of waveguide after being 
closed off by two perpendicular sheets.

◼ → only certain well-defined wavelengths λr are present in the cavity.

◼ General resonant condition

◼ Near the resonant wavelength, resonant cavity behaves 
like electrical oscillator but with much higher Q-value and 
corresponding lower losses of resonators made of 
individual coils and capacitors.
❑ Exploited to generate high-accelerating voltages
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Rectangular Resonant Cavities

◼ Inserting

into the resonance condition yields

◼ Integers m,n,and q define modes in resonant 
cavity.
❑ Number of modes is unlimited but only a few of them 

used in practical situations.
◼ m,n,and q between 0 and 2 
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Cylindrical Resonant Cavities

◼ Inserting the expression for cut-off frequency 

into general resonance condition yields

❑ where x1=2.0483 is the first zero of the Bessel 

function.

◼ For the case of q=0, termed the TM010 mode, 

the resonant wavelength reduces to
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Bessel Functions



Pill-box Cylindrical Cavity

Cylindrical pill-box cavity with holes

for beam and coupler.

Lines of force for the

electrical field.

TM010 TM011

❑ The simplest RF cavity type

❑ The accelerating modes of this

cavity are TM0lm

▪ Indices refer to the polar

co-ordinates φ, r and z



Pill-box Cylindrical Cavity

◼ The modes with no φ variation are:

◼ l indicates the radial variation while m controls 
the number of wavelengths in the z-direction.

◼ P0l is the argument of the Bessel function when 
it crosses zero for the lth time.
❑ J0(P0l) = 0 for P0l = 2.405 
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Pill-box Cylindrical Cavity

◼ TM010 Mode
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Quality Factor of Resonator, Q

❑ Ratio of stored energy to energy dissipated 
per cycle divided by 2

Ws = stored energy in cavity

Wd = energy dissipated per cycle divided by 2

Pd = power dissipated in cavity walls

 = frequency
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Quality Factor of Resonator, Q

❑ Stored energy over cavity volume is

where the first integral applies to the time the 

energy is stored in the E-field and the second 

integral as it oscillates back into the H-field.
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Quality Factor of Resonator, Q

❑ Losses on cavity walls are introduced by 

taking into account the finite conductivity  of 

the walls.

❑ Since, for a perfect conductor, the linear 

density of the current j along walls of 

structure is

j = n H

we can write
ds

s

surf

d HR
P =

2

2
with s = inner surface of conductor



Quality Factor of Resonator, Q 

Rsurf = surface resistance

δ = skin depth
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For Cu, Rsurf = 2.61  10-7 Ω



Shunt Impedance - Rs

❑Figure of merit for an accelerating cavity

❑Relates accelerating voltage to the power Pd to be 

provided to balance the dissipation in the walls.

❑Voltage along path followed by beam in 

electric field Ez is

V = path |Ez(x,y,z)| dl

from which (peak-to-peak)
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Shunt Impedance - Rs
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Energy Gain

◼ Energy gain of particle as it travels a distance 

through linac structure depends only on 

potential difference crossed by particle:
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Analogous to Electrical Oscillator

❑ Cavity behaves as an 

electrical oscillator but 

with very high quality 

factor (sharp resonance)

Z
Q R sr =


=





r resonant frequency

Δ = frequency shift at which amplitude

is reduced by -3 dB relative to resonance peak

On resonance the impedance is

Electrical response of cavity

described by parallel circuit

containing C, L, and Rs

C
LZ




1
==



Transit-Time Factor

❑ Accelerating gap

❑ Space between drift tubes 

in linac structure

❑ Space between entrance 

and exit orifices of cavity 

resonator

❑ Field is varying as the 

particle traverses the gap

❑ Makes cavity less efficient 

and resultant energy gain 

which is only a fraction of 

the peak voltage

)c o s (
0
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The RF Gap

Field is uniform along gap axis

and depends sinusoidally on time

Phase  refers to particle in middle of

gap z=0 at t=0



Transit-Time Factor

❑ Transit-Time Factor is ratio of energy actually 

given to a particle passing the cavity centre at 

peak field to the energy that would be 

received if the field were constant with time at 

its peak value

❑ The energy gained over the gap G is:
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Transit-Time Factor

cG

cG
FactorG apTransit
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the Transit Gap Factor becomes

The Transit Gap Factor is defined as

Defining a transit angle 

with 0 <  < 1



The Transit-Time Factor

❑Observations

❑At relativistic energies, cavity dimensions are 

comparable with /2

❑ Reduction in efficiency due to transit-time factor is 

acceptable.

❑At low energies, this is not the case 

❑Cavities have strange re-entrant configuration to 

keep G short compared to dimensions of its 

resonant volume.



The Transit-Time Factor

❑Compromise cavity 

design

❑ Increasing ratio of 

volume/surface area

❑ Reduces ohmic losses

❑ Increases Q factor

❑ Minimise gap factor

Field in resonant cavity

‘Nose-cones’



Kilpatrick Limit

◼ RF breakdown observed at very high fields.

◼ Kilpatrick Limit expresses empirical relation 

between accelerating frequency and E-field

▪ f = 1.64Ek
2e − 8.5 / E

k



Software for Cavity Design

Structures usually solved by Finite Element Analysis


