Transverse Beam Dynamics - Tutorial

JAI lectures 2021 - Michaelmas Term

1 Preliminary exercices

- 1. Watch this Iron Man clip and discuss the main accelerator physics concepts involved either if they are properly represented or not in the movie.
- 2. Go through the short questions posted during lectures and try to answer them.

2 To think about

- 1. How can we measure $\beta^*(\beta$ -function at the IP) in the LHC?
- 2. What are the possible effects of ground motion in the beam?
- 3. What can we do if there is a small object partially blocking the beam aperture?

3 Exercise: Understanding the phase space concept

- 1. Phase Space Representation of a Particle Source:
 - Consider a source at position s_0 with radius w emitting particles. Make a drawing of this setup in the configuration space and in the phase space. Which part of the phase space can be occupied by the emitted particles?
 - Any real beam emerging from a source like the one above will be collimated. This can be modelled by assuming that a distance d away from the source there is an iris with opening radius R = w. Draw this setup in the configuration space and in the phase space. Which part of the phase space is occupied by the beam, right after the collimator?
- 2. Sketch the emittance ellipse of a particle beam in:
 - (I) horizontal x x' phase space at the position of a transverse waist,
 - (II) when the beam is divergent, and
 - (III) when the beam is convergent.

4 Exercise: Stability condition

Consider a lattice composed by a single 2 meters long quadrupole, with f = 1 m

- Prove that if the quadrupole is defocusing, then a lattice is not stable
- Prove that if the quadrupole is focusing, then the lattice is stable

5 Twiss functions evolution

Which of the optics parameters can be constant

- 1. In a drift.
- 2. In a quadrupole with constant strength K.

Justify the response.

Hint: The differential equation representing the evolution of the β -function reads,

$$\frac{1}{2}\beta\beta'' - \frac{1}{4}\beta'^2 + \beta^2 K = 1$$

6 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at L_{cell} distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at $(x_i, x'_i) = (0, 0)$, an arbitrary offset at the end of the cell while preserving its angle, $(x_f, x'_f) = (x_{arbitrary}, 0)$.

7 Exercise: Chromaticity in a FODO cell

Consider a ring made of N_{cell} identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both of length l_q , but their strengths may differ.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approximations)

- 2. Calculate the natural chromaticities for this ring.
- 3. Show that for short quadrupoles, if $f_F \simeq f_D$,

$$\xi_N \simeq -\frac{N_{cell}}{\pi} \tan \frac{\mu}{2}.$$

- 4. Design the FODO cell such that it has: phase advance $\mu = 90$ degrees, a total length of 10 m, and a total bending angle of 5 degrees. What are β_{max} , β_{min} , D_{max} , D_{min} ?
- 5. Add two sextupoles at appropriate locations to correct horizontal and vertical chromaticities. (hints: use 1 sextupole for the horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).
- 6. If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much is the tune-shift with and without sextupoles?

8 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry with respect to the IP:

The beam enters the quadrupole with Twiss parameters $\beta_0 = 20$ m and $\alpha_0 = 0$. The drift space has length L = 10 m.

- (i) Determine the focal length of the quadrupole in order to locate the waist at the IP.
- (ii) What is the value of β^* ?
- (iii) What is the phase advance between the quadrupole and the IP?