
Transverse Beam Dynamics - Tutorial

JAI lectures 2021 - Michaelmas Term

1 Preliminary exercices

1. Watch this Iron Man clip and discuss the main accelerator physics concepts involved either if they are properly represented
or not in the movie.

2. Go through the short questions posted during lectures and try to answer them.

2 To think about

1. How can we measure β∗(β-function at the IP) in the LHC?

We cannot measure it directly because we do not have BPMs a the IP. However using K-modulation technique, the strength of
the last quadrupole before the IP is modulated. This modulation produces a measurable tune shift. The tune shift is linerly
related to the β-function at the quadrupole location.

∆Q =
βq∆K

4π

By transporting the measured β-function at the quadrupole to the IP we can have an estimation of the β-function at that
location.

1. What are the possible e�ects of ground motion in the beam?

(a) Orbit distorsion.

(b) Emittance growth.

2. What can we do if there is a small object partially blocking the beam aperture?

(a) Orbit bump.

(b) Evaporate it.

(c) Open the machine and remove it.

3 Exercise: Understanding the phase space concept

1. Phase Space Representation of a Particle Source:

• Consider a source at position s0 with radius w emitting particles. Make a drawing of this setup in the con�guration
space and in the phase space. Which part of the phase space can be occupied by the emitted particles?

Answer. Particles are emitted from the entire source surface x ∈ [−w,+w] with a trajectory slope ϕ ∈
[
−π2 ,

π
2

]
, i.e.

the particles can have any x′ ∈ R. The occupied phase space area is in�nite.
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• Any real beam emerging from a source like the one above will be collimated. This can be modelled by assuming that
a distance d away from the source there is an iris with opening radius R = w. Draw this setup in the con�guration
space and in the phase space. Which part of the phase space is occupied by the beam, right after the collimator?

Answer. Particles with angle x′ = 0 are emitted from the entire source surface x ∈ [−w,+w] and arrive behind the
iris opening. For x = ±w there is a maximum angle x′ = ±2w/d that will still be accepted by the iris. This leads to
a parallelogram in phase space. Such a beam has a speci�c emittance given by the occupied phase space area.

2. Sketch the emittance ellipse of a particle beam in:

(I) horizontal x-x′ phase space at the position of a transverse waist,

Answer. Beam at the position of a transverse (x) waist

(II) when the beam is divergent, and

Answer. Divergent beam (positive slope):
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(III) when the beam is convergent.

Answer. Convergent beam (negative slope):

4 Exercise: Stability condition

Consider a lattice composed by a single 2 meters long quadrupole, with f = 1 m

• Prove that if the quadrupole is defocusing, then a lattice is not stable

• Prove that if the quadrupole is focusing, then the lattice is stable

Solution:
This quadrupole is clearly thick. Therefore one should use the thick quadrupole matrices. However, I post the thin lens

calculation for comparison.

• In the case of a defocusing quadrupole:

MQD =

(
1 Lquad/2
0 1

)(
1 0
1
f 1

)(
1 Lquad/2
0 1

)
which can be computed to be

MQD =

(
2 3
1 2

)
has trace Tr (MQD) = 4, which does not ful�ll the stability requirement:

|Tr (MQD)| ≤ 2

• In the case of a focusing quadrupole:

MQF =

(
1 Lquad/2
0 1

)(
1 0
− 1
f 1

)(
1 Lquad/2
0 1

)
=

(
0 1
−1 0

)
which clearly satis�es the stability criterion.

5 Twiss functions evolution

Which of the optics parameters can be constant

1. In a drift.

2. In a quadrupole with constant strength K.

Justify the response.
Hint: The di�erential equation representing the evolution of the β-function reads,

1

2
ββ′′ − 1

4
β′2 + β2K = 1
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Solution

Let's consider the two cases separately:
1. In a drift K = 0,

1

2
ββ′′ − 1

4
β′2 = 1

therefore, β cannot be constant (β′ = β′′ = 0).
Taking into account that −2α = β′ , if α = const., β′′ = 0 and β must evolve linearly with s.
2. In a quadrupole, K 6= 0
therefore β is constant if

β =
1√
K

In addition, ifα is constant,

−α2 + β2K = 1

K =
1 + α2

β2

6 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at Lcell
distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at (xi, x

′
i) = (0, 0),

an arbitrary o�set at the end of the cell while preserving its angle,
(
xf , x

′
f

)
= (xarbitrary, 0).

Solution

The transfer matrix of a periodic cell is:

M =

(
cosϕ+ α sinψ β sinϕ
−γ sinϕ cosϕ− α sinϕ

)
Substituting the value for the phase advance we get the matrix to apply to the beam right after the �rst kick k1:(

xf
x′f

)
=

√
2

2

(
1 + α β
−γ 1− α

)(
0
k1

)
=

√
2

2

(
βk1

(1− α)k1

)
From this we see that to achieve an arbitrary xf we need:

k1 =

√
2xf
β

The second kick, k2, has only to remove the �nal tilt:

k2 = −x′f = − (1− α)√
2

k1

Notice that one can reduce the strength of the kickers by placing them close to a focusing quadrupoles, where β is maximum.
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7 Exercise: Chromaticity in a FODO cell

Consider a ring made of Ncell identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both
of length lq, but their strengths may di�er.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approximations)

Answer. First we calculate the transfer matrix for a FODO cell (see �gure). We start from the centre of the focusing
quadrupole where the betatron function is maximum. This exercise considers a general case where fF is not necessarily
equal to fD. Using the thin lens approximation for the FODO cell with drifts of length L we get the following matrix:

Mcell =

(
1 0
− 1

2fF
1

)(
1 L
0 1

)(
1 0
1
fD

1

)(
1 L
0 1

)(
1 0
− 1

2fF
1

)

=

(
1− L( 1

fF
− 1

fD
+ L

2fF fD
) 2L+ L2

fD
1
fD
− 1

fF
(1− L

2fF
+ L

fD
− L2

4fF fD
) 1− L( 1

fF
− 1

fD
+ L

2fF fD
)

) (1)

Remember that, in terms of betatron functions and phase advance, the matrix of a FODO cell is given by:

Mcell =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(2)

Since β has a maximum at the centre of the focusing quadrupole, then α = −β′/2 = 0, and we can also write:

Mcell =

(
cosµ β sinµ

− sinµ
β cosµ

)
Equating Eq. (1) to Eq. (3) we obtain:

cosµ =
1

2
tr(Mcell) = 1 +

L

fD
− L

fF
− L2

2fDfF
= 1− 2 sin2 µ

2

or

2 sin2 µ

2
=

L

fF
− L

fD
+

L2

2fDfF
(3)

Where we have applied the following trigonometric identity: cosµ = 1− 2 sin2 µ
2 .

The maximum for the betatron function βmax occurs at the focusing quadrupole. Since Eq. (1) is for a periodic cell
starting at the centre of the focusing quadrupole, the m12 component of the matrix gives us

βmax sinµ = 2L+
L2

fD

Rearranging:
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βmax =
2L+ L2

fD

sinµ
(4)

On the other hand, the minimum for the betatron function occurs at the defocusing quadrupole position. Therefore,
interchanging fF with −fD for a FODO cell gives:

βmin =
2L− L2

fF

sinµ
(5)

2. Calculate the natural chromaticities for this ring.

Answer. Let us remember the de�nition of natural chromaticity. The so-called �natural� chromaticity is the chromaticity
that derives from the energy dependence of the quadrupole focusing, i.e. the chromaticity arising only from quadrupoles.
The chromaticity is de�ned in the following way:

ξ =
∆Q

∆P/P0
(6)

where ∆Q is the tune shift due to the chromaticity e�ects and ∆P/P0 is the momentum o�set of the beam or the particle
with respect to the nominal momentum p0.

The natural chromaticity is de�ned as (remember from Lecture 4):

ξN = − 1

4π

˛
β(s)k(s)ds (7)

Sometimes, especially for small accelerators, the chromaticity is normalised to the machine tune Q and de�ned also as:

ξ′ =
∆Q/Q

∆P/P0
(8)

ξ′N = − 1

4πQ

˛
β(s)k(s)ds (9)

For this exercise, either you decide to use Eq. (7) or Eq. (9) it is �ne! From now on let us use Eq. (7):

ξN = − 1

4π

˛
β(s)k(s)ds

= − 1

4π
×Ncell

ˆ
cell

β(s)k(s)ds

= −Ncell
4π

∑
i∈{quads}

βi(klq)i

Here we have used the following approximation valid for thin lens:

ˆ
cell

β(s)k(s)ds '
∑

i∈{quads}

βi(klq)i

where we sum over each quadrupole i in the cell. In the case of the FODO cell we have two half focusing quadrupoles and
one defocusing quadrupole. Taking into account that (klq)i = 1/fi, we have:
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ξN ' −
Ncell
4π

∑
i∈{quads}

βi(klq)i

= −Ncell
4π

[
βmax

(
1

2fF

)
+ βmin

(
− 1

fD

)
+ βmax

(
1

2fF

)]
= −Ncell

4π

[
βmax

(
1

fF

)
+ βmin

(
− 1

fD

)]
= − Ncell

4π sinµ

[(
2L+

L2

fD

)
1

fF
−
(

2L− L2

fF

)
1

fD

]
= − NcellL

2π sinµ

[
1

fF
− 1

fD
+

L

fF fD

]
Here we have used the expressions (4) and (5) for βmax and βmin.

3. Show that for short quadrupoles, if fF ' fD,

ξN ' −
Ncell
π

tan
µ

2
.

Answer. If fF ' fD, we have

ξN ' −
Ncell

2π sinµ

L2

fF fD

= − Ncell
4π sin µ

2 cos µ2
4 sin2 µ

2

where we have used the trigonometric identity: sinµ = 2 sin µ
2 cos µ2

Considering Eq. (3), we have

4 sin2 µ

2
=

L2

fF fD

which �nally gives:

ξN ' −
Ncell
π

tan
µ

2

Q.E.D.!

4. Design the FODO cell such that it has: phase advance µ = 90 degrees, a total length of 10 m, and a total bending angle
of 5 degrees. What are βmax, βmin, Dmax, Dmin?

Answer. Lattice parameters: L = 10 m, θ = 5 degrees= 0.087266 rad, f = 1√
2
L
2 = 3.535 m

Maximum and minimum betatron functions:

βmax =
L+ L2

4f

sinµ
= L+

L2

4f
= 17.07 m, βmin =

L− L2

4f

sinµ
= L− L2

4f
= 2.93 m

Maximum and minimum dispersion:

Dmax =
Lθ
(
1 + 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f +

L

2

)
θ = 0.59060 m, Dmin =

Lθ
(
1− 1

2 sin µ
2

)
4 sin2 µ

2

=
f

L

(
4f − L

2

)
θ = 0.28207 m
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5. Add two sextupoles at appropriate locations to correct horizontal and vertical chromaticities. (hints: use 1 sextupole for
the horizontal plane and 1 for the vertical plane; do not consider geometric aberrations).

Answer. By locating sextupoles with strength Ks > 0 where βx is large and βy is small, we can correct the horizontal
chromaticity with relatively little impact on the vertical chromaticity. Similarly, by locating sextupoles with Ks < 0
where βy is large and βx is small, we can correct the vertical chromaticity with relatively little impact on the horizontal
chromaticity. See �gure below.

Let us assume the case of a FODO lattice where fF = fD = f . Then the natural chromaticity of this FODO cell is given
by the expression (exercise 1.3):

ξN ' −
1

π
tan

µ

2

For µ = 90 it is ξN ' −1/π in both horizontal and vertical plane. Therefore, we need to adjust the strength of the
sextupoles to cancel this chromaticity:

− 1

4π
[K2FDmaxβmax +K2DDminβmin] ' − 1

π

where K2F = k2F ls is the normalised integrated strength of the sextupole located near the focusing quadrupole, and
K2D = k2Dls the normalised integrated strength of the sextupole near the defocusing quadrupole (with ls the e�ective
length of the sextupole). For an e�ective cancellation of the chromaticity in both planes, usually K2F > 0 and K2D < 0.
Substituting the values for the maximum and minimum dispersion and betatron function in terms of the total length of
the lattice L and the focal length of the quadrupoles f , one obtains the following expression:

− 1

4π

f

L
θ

[
K2F

(
4f +

L

2

)(
L+

L2

4f

)
+K2D

(
4f − L

2

)(
L− L2

4f

)]
' − 1

π

Considering the same absolute value for the strength of the sextupoles, K2F = −K2D = Ks, we can write then:

3

4π
KsLfθ =

1

π

The strength of the sextupole is given then by:

Ks =
4

3Lfθ

Then, substituting all the numerical values for the lattice parameters:

K2F = 0.865 m−2

K2D = −0.865 m−2

6. If the gradient of all focusing quadrupoles in the ring is wrong by +10%, how much is the tune-shift with and without
sextupoles?
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Answer.

If the gradient of the focusing quadrupole has and error of 10%, then the corresponding quad. strength error is also 10%.
We calculate the number of cells of a ring made of these FODO cells, Ncell = 72 cells, and then we calculate the total
tune-shift in both planes:

∆Qx = Ncell
∆KF βmax

4π = 9.78

∆Qy = Ncell
∆KF βmin

4π = 1.68

When the sextupoles correct for the chromaticity, the particles have, in principle, no tune-shift with energy. In real
machines, one wants to have a non-zero residual chromaticity to stabilise the beam against resonant imperfections.

8 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirror-symmetry
with respect to the IP:

IP

L
f

The beam enters the quadrupole with Twiss parameters β0 = 20 m and α0 = 0. The drift space has length L = 10 m.

(i) Determine the focal length of the quadrupole in order to locate the waist at the IP.

(ii) What is the value of β??

(iii) What is the phase advance between the quadrupole and the IP?

Solution.

M =

(
1− L

f L

− 1
f 1

)
(

β −α
−α γ

)
IP

= M ·
(

β −α
−α γ

)
0

·MT

(
βIP 0
0 1/βIP

)
= M ·

(
β0 0
0 1/β0

)
·MT

We get a system of equations: βIP = β0

(
1− L

f

)2

+ L2

β0

1
βIP

= β0

f2 + 1
β0

multiplying them:

1 =

(
β0

(
1− L

f

)2

+
L2

β0

)(
β0

f2
+

1

β0

)
and solving for f :

f =
β0

√
(β2

0 − 4L2) + β2
0

2L

from which one �nds:
f = 20 m
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and substituting back into one of the equations in the system:

βIP = 10 m.

The phase advance can be computed remembering that

M0→s =

 √
βs

β0
(cosψs + α0 sinψs)

√
βsβ0 sinψs

(α0−αs) cosψs−(1+α0αs) sinψs√
βsβ0

√
β0

βs
(cosψs − αs sinψs)


In this case, α0 = αIP = 0,

Trace (M) =
3

2
=

(√
β?

β0
+

√
β0

β?

)
cos ∆µ

∆µ = arccos

3

2
· 1√

β?

β0
+
√

β0

β?

 = arccos

(
3

2
· 1

2.1213

)
= 45 degrees

Alternatively, given that the system:

M = Q ·D ·D ·Q

is indeed periodic, one can say:

M =

(
1− 2L

f 2L
2L
f2 − 2

f 1− 2L
f

)

cos ∆µtwice =
1

2
Trace (M) =

1

2
Trace

(
2− 4L

f

)
= 0

∆µtwice = 90 degrees ⇒ ∆µ = 45 degrees
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