ISIS Neutron and Muon Source

Accelerator Physics

Lecture 11: Momentum Effects

Rob Williamson

$4^{\text {th }}$ November 2021

ISIS Neutron and Muon Source

Contents

Curvilinear Coordinates
Transverse Equation of motion
Dispersion
Dispersed Beam Orbits
Dispersion Suppression
Chromaticity
Correcting Chromaticity
Summary

Curvilinear Co-ordinates

- (x, y, s), often called the standard co-ordinate system in accelerator physics
- The origin is defined by the vector $\vec{S}(s)$ following the ideal reference path
- $x=r-\rho \quad s=\rho \theta$
- $X=r \sin \theta=(\rho+x) \sin \theta, Y=y, Z=r \cos \theta=(\rho+x) \cos \theta$

Transverse Equation of Motion - 1

- Start with the basics

$$
\begin{align*}
F_{x} & =m \frac{\mathrm{~d}^{2} r}{\mathrm{~d} t^{2}}-\frac{m v^{2}}{r} \\
& =m \frac{\mathrm{~d}^{2}(x+\rho)}{\mathrm{d} t^{2}}-\frac{m v^{2}}{x+\rho}=-e B_{y} v \tag{1}
\end{align*}
$$

- Factorise the equation

$$
\begin{equation*}
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{m v^{2}}{\rho}\left(1+\frac{x}{\rho}\right)^{-1}=-e B_{y} v \tag{2}
\end{equation*}
$$

- Utilise the binomial approximation

$$
\begin{equation*}
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=-e B_{y} v \tag{3}
\end{equation*}
$$

Transverse Equation of Motion - 2

- Replace t with s and rearrange

$$
\begin{gather*}
m v^{2} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} s^{2}}-\frac{m v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=-e B_{y} v \tag{4}\\
\frac{\mathrm{~d}^{2} x}{\mathrm{~d} s^{2}}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=-\frac{e B_{y}}{m v} \tag{5}
\end{gather*}
$$

- Consider small displacements in x

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=-\frac{e}{m v}\left(B_{0}+x \frac{\partial B_{y}}{\partial x}\right) \tag{6}
\end{equation*}
$$

Transverse Equation of Motion - 3

- Set field gradient, $g=\frac{\partial B_{y}}{\partial x}$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=-\frac{e B_{0}}{m v}-\frac{e x g}{m v} \tag{7}
\end{equation*}
$$

This is a modified Hill's equation

- Consider small momentum offsets $\Delta p=p-p_{0} \ll p_{0}$

$$
\begin{align*}
\frac{1}{p_{0}+\Delta p} & =\frac{1}{p_{0}}\left(1+\frac{\Delta p}{p_{0}}\right)^{-1} \\
& \approx \frac{1}{p_{0}}-\frac{\Delta p}{p_{0}^{2}} \tag{8}
\end{align*}
$$

Transverse Equation of Motion - 4

- Insert equation 8 into modified Hill's equation 7

$$
\begin{array}{r}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=-\frac{e B_{0}}{p}-\frac{e x g}{p} \\
\frac{\mathrm{~d}^{2} x}{\mathrm{~d} s^{2}}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=-\frac{e B_{0}}{p_{0}}+\frac{e B_{0} \Delta p}{p_{0}^{2}}-\frac{e x g}{p_{0}}+\frac{e x g \Delta p}{p_{0}^{2}} \tag{9}
\end{array}
$$

- Remember magnetic rigidity??, $B \rho=p / e$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}+\frac{x}{\rho^{2}}=\frac{1}{\rho} \frac{\Delta p}{p_{0}}+k x \tag{10}
\end{equation*}
$$

where $k=e g / p_{0}$ and the last term is the product of two small terms (≈ 0)

Transverse Equation of Motion - 5

- Finally a new modified Hill's equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}+\left(\frac{1}{\rho^{2}}-k\right) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}} \tag{11}
\end{equation*}
$$

- Compare to the original Hill's equation from transverse lectures

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} s^{2}}+\left(\frac{1}{\rho^{2}}-k\right) x=0 \tag{12}
\end{equation*}
$$

- Particles with different momenta/energy have different orbits

Dispersion

- General solution will be of the form $x(s)=x_{h}(s)+x_{i}(s)$
- From previous lecture, dispersion is defined as

$$
\begin{equation*}
D(s)=\frac{x_{i}(s)}{\Delta p / p_{0}} \tag{13}
\end{equation*}
$$

- It is just another orbit and is subject to the focusing properties of the lattice
- The orbit of any particle is
 the sum of the well-known x_{h} and dispersion

Matrix formalism

- Recall transfer matricies from transverse lectures and add dispersion

$$
\binom{x}{x^{\prime}}_{1}=\left(\begin{array}{cc}
C & S \tag{14}\\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{0}+\frac{\Delta p}{p_{0}}\binom{D}{D^{\prime}}
$$

where $C=\cos \sqrt{|k|} s, S=\frac{1}{\sqrt{k}} \sin \sqrt{|k|} s, C^{\prime}=\frac{\mathrm{d} C}{\mathrm{~d} s}, S^{\prime}=\frac{\mathrm{d} S}{\mathrm{~d} s}$

$$
\text { and } D^{\prime}(s)=\frac{x_{i}^{\prime}(s)}{\Delta p / p_{0}}
$$

- One can show that

$$
\begin{equation*}
D(s)=S(s) \int_{s_{0}}^{s_{1}} \frac{1}{\rho} C(s) \mathrm{d} s-C(s) \int_{s_{0}}^{s_{1}} \frac{1}{\rho} S(s) \mathrm{d} s \tag{15}
\end{equation*}
$$

Examples of Dispersion - 1

- Start with something simple, a drift!

$$
M_{\mathrm{drift}}=\left(\begin{array}{ll}
1 & l \tag{16}\\
0 & 1
\end{array}\right), \quad C(s)=1, S(s)=l
$$

- Importantly $\rho=\infty$ so immediately $D_{\text {drift }}=0$
- OK, how about a pure sector dipole?

$$
\begin{align*}
& M_{\text {dipole }}=\left(\begin{array}{cc}
\cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\
-\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho}
\end{array}\right) \\
& C(s)=\cos \frac{l}{\rho}, S(s)=\rho \sin \frac{l}{\rho} \tag{17}
\end{align*}
$$

Examples of Dispersion - 2

- Putting this in the equation for dispersion

$$
\begin{align*}
D_{\text {dipole }}(s) & =\sin \frac{l}{\rho} \int_{0}^{l} \cos \frac{s}{\rho} \mathrm{~d} s-\cos \frac{l}{\rho} \int_{0}^{l} \sin \frac{s}{\rho} \mathrm{~d} s \\
& =\sin \frac{l}{\rho}\left[\rho \sin \frac{s}{\rho}\right]_{0}^{l}-\cos \frac{l}{\rho}\left[-\rho \cos \frac{s}{\rho}\right]_{0}^{l} \\
& =\rho \sin ^{2} \frac{l}{\rho}+\rho \cos \frac{l}{\rho}\left(\cos \frac{l}{\rho}-1\right) \\
& =\rho\left(1-\cos \frac{l}{\rho}\right) \tag{18}
\end{align*}
$$

- And $D_{\text {dipole }}^{\prime}(s)=\sin \frac{l}{\rho}$

Examples of Dispersion - 3

- Assuming θ is small we can expand this

$$
\begin{align*}
D(s)_{\text {dipole }} & =\rho\left(1-\cos \frac{l}{\rho}\right) \\
& \approx \rho\left(1-\left[1-\frac{1}{2}\left(\frac{l}{\rho}\right)^{2}\right]\right) \\
& \approx \frac{\rho}{2}\left(\frac{l}{\rho}\right)^{2}=\frac{\rho \theta^{2}}{2} \tag{19}
\end{align*}
$$

Matrix formalism continued

- Can now expand the transfer matrix to include dispersion

$$
\left(\begin{array}{c}
x \tag{20}\\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{1}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

- Dispersion can be calculated by an optics code for a real machine
- $D(s)$ is created by the dipoles...
- ... and focused by the quadrupoles
- Diamond DBA example \Rightarrow

ISIS Neutron and Muon Source

Dispersed Beam Orbits

- These are 2D ellipses defining the beam
- The central and extreme momenta are shown (there is a distribution in between)
- The vacuum chamber must accommodate the full spread
- With dispersion the half height and half width are (assuming $D_{y}=0$)

$$
\begin{equation*}
a_{y}=\sqrt{\eta_{y} \beta_{y}}, \quad a_{x}=\sqrt{\eta_{x} \beta_{x}}+D(s) \frac{\Delta p}{p} \tag{21}
\end{equation*}
$$

Dispersed Beam Size

- Dispersion also contributes to the beam size
- Therefore we can measure the dispersion by measuring beam sizes at different locations with different amounts of dispersion and different β s

ISIS Neutron and Muon Source

Dispersion Suppression

- Given a periodic lattice what can we do about dispersion?
- We can't get rid of it completely as it's produced by the dipoles
- Answer ...suppress the dispersion elsewhere

Dispersion Suppression: Easy option

- Use extra quadrupoles to match $D(s)$ and $D^{\prime}(s)$
- Given an optical solution in the arc, suppressing dispersion can be achieved with 2 additional quadrupoles
- But that's not enough! Need to match the Twiss, optical parameters too
- An extra 4 quadrupoles are needed to match α and β

Dispersion Suppression: Easy option

Advantages:

- Straight forward
- Works for any phase advance per cell
- Ring geometry is unchanged
- Flexible! Can match between different lattice structures

Disadvantages:

- Additional quadrupole magnets and power supplies required
- The extra quadrupoles are, in general stronger
- The β function increases so the aperture increases

ISIS Neutron and Muon Source

Dispersion Suppression: Missing Bend

- Start with $D=D^{\prime}=0$ and create dispersion such that the conditions are matched in the first regular quadrupoles
- Utilise n cells without dipole magnets at the end of an arc, followed by m arc cells
- ... hence "missing bend" dispersion suppression
- Condition:

$$
\begin{equation*}
\frac{2 m+n}{2} \Phi_{C}=(2 k+1) \frac{\pi}{2} \tag{22}
\end{equation*}
$$

where $\Phi_{C}=$ cell phase advance, $\sin \frac{m \Phi_{C}}{2}=\frac{1}{2}, k=0,2, \ldots$ or $\sin \frac{m \Phi_{C}}{2}=-\frac{1}{2}, k=1,3, \ldots$

Dispersion Suppression: Missing Bend

Advantages:

- No additional quadrupoles or new power supplies
- Aperture requirements are the same as those in the arc as β is unchanged

Disadvantages:

- Only works for certain phase advances restricting optics options in the arc
- The geometry of the ring is changed

Dispersion Suppression: Half Bend

- How about inserting different strength dipoles? Does it help?
- Assume you have a FODO arc cell, a lattice insertion and then a dispersion free section without dipoles
- Condition for vanishing disperion can be calculated for n cells with dipole strength $\delta_{\text {sup }}$

$$
\begin{equation*}
2 \delta_{\mathrm{sup}} \sin ^{2}\left(\frac{n \Phi_{C}}{2}\right)=\delta_{\mathrm{arc}} \tag{23}
\end{equation*}
$$

- So if we require $\delta_{\text {sup }}=\frac{1}{2} \delta_{\text {arc }}$ we get

$$
\begin{gather*}
\sin ^{2}\left(\frac{n \Phi_{C}}{2}\right)=1 \Rightarrow \sin \left(n \Phi_{C}\right)=0 \\
\Rightarrow n \Phi_{C}=k \pi, \quad k=1,3, \ldots \tag{24}
\end{gather*}
$$

ISIS Neutron and Muon Source

Dispersion Suppression: Half Bend

Advantages and Disadvantages are the same as for the missing bend only there is an extra disadvantage:

A special half strength dipole is required which may add extra cost to the design

- What about off-momentum effects through quadrupoles?
- The focusing strength of a quadrupole depends on the momentum of the particle $1 / f \propto 1 / p$

- Particles with $\Delta p>0, \Delta p<0$, ideal momentum
- Off-momentum particles oscillate around a chromatic closed orbit NOT the design orbit

Chromaticity - 2

- Normalised quadrupole strength $k=\frac{g}{p / e}$
- In case of a momentum spread

$$
\begin{gather*}
k=\frac{e g}{p_{0}+\Delta p} \approx \frac{e g}{p_{0}}\left(1-\frac{\Delta p}{p_{0}}\right)=k_{0}+\Delta k \tag{25}\\
\Delta k=-\frac{\Delta p}{p_{0}} k_{0} \tag{26}
\end{gather*}
$$

- This acts like a quadrupole error in the machine and leads to a tune spread

$$
\begin{equation*}
\Delta Q=\frac{1}{4 \pi} \int \Delta k(s) \beta(s) \mathrm{d} s=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} \int k_{0}(s) \beta(s) \mathrm{d} s \tag{27}
\end{equation*}
$$

- This spread in tune is expressed via chromaticity, Q' or the normalised chromaticity, ξ

$$
\begin{equation*}
Q^{\prime}=\frac{\Delta Q}{\Delta p / p_{0}}, \quad \xi=\frac{\Delta Q / Q}{\Delta p / p_{0}} \tag{28}
\end{equation*}
$$

- Note that chromaticity is produced by the lattice itself
- It is determined by the focusing strength of all the quadrupoles
- The "natural" chromaticity is negative and can lead to a large tune spread and consequent instabilities
- For example, for a FODO lattice $\xi \approx-1$

Correcting Chromaticity - 1

- Want to "sort" the particles by their momentum
- Utilise dispersive trajectory! Apply magnetic field that is zero at small amplitudes and rises quickly outward
- Use sextupoles!

$$
\begin{equation*}
B_{x}=\tilde{g} x z, \quad B_{y}=\frac{1}{2} \tilde{g}\left(x^{2}-y^{2}\right) \tag{29}
\end{equation*}
$$

- This results in a linear gradient in x, $\frac{\partial B_{x}}{\partial y}=\frac{\partial B_{y}}{\partial x}=\tilde{g} x$
- And a normalised quadrupole strength

$$
k_{\mathrm{sext}}=\frac{\tilde{g} x}{p / e}=m_{\mathrm{sext}} x=m_{\mathrm{sext}} D \Delta p / p
$$

Correcting Chromaticity - 2

- This all results in a corrected chromaticity

$$
\begin{equation*}
Q^{\prime}=-\frac{1}{4 \pi} \oint \beta(s)[k(s)-m D(s)] \mathrm{d} s \tag{30}
\end{equation*}
$$

- Chromatic sextupoles: Sextupoles at nonzero dispersion can correct natural chromaticity
- Usually 2 families, one horizontal and one vertical
- Place where $\beta_{x / y} D$ is large to minimise their strength
- Reminder of co-ordinate system
- Transverse equation of motion: modified Hill's equation with momentum spread
- Dispersion revisited in matrix form
- Effect of dispersion on beam orbit and beam size
- Dispersion suppression
- Chromaticity and chromatic tune spread
- Chromatic sextupoles and chromaticity correction

Science and Technology Facilities Council

References

- Bernard Holzer, Lattice Design and Transverse Dynamics Course, CERN Accelerator School 2015, https://cas.web.cern.ch/schools/warsaw-2015
- S.Y. Lee, Accelerator Physics, $2^{\text {nd }}$ edition, World Scientific, 2007
- H. Wiedemann, Particle Accelerator Physics I, $2^{\text {nd }}$ edition, Springer, 2003
- Edward J. N. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2001
- A. Chao, K.H. Mess, M. Tigner, F. Zimmerman, Handbook of Accelerator Physics and Engineering, $2^{\text {nd }}$ edition, World Scientific, 2013
- Mario Conte, William W MacKay, An Introduction to the Physics of Particle Accelerators, $2^{\text {nd }}$ edition, World Scientific, 2008
- Klaus Wille, The Physics of Particle Accelerators: An Introduction, Oxford University Press, 2005
- D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley-VCH, 2004
- J.D. Lawson, The Physics of Charged-Particle Beams, Oxford University Press, 1978
- Klaus G. Steffen, High Energy Beam Optics, Interscience Publishers, 1965

