Hamiltonian Dynamics
 Lecture 1

David Kelliher
Rutherford Appleton Laboratory

November 9, 2021

Content

Lecture 1

- Comparison of Newtonian, Lagrangian and Hamiltonian approaches.
- Hamilton's equations, canonical transformations, symplecticity, integrability.
- Poisson brackets and Lie transformations.

Lecture 2

- The "accelerator" Hamiltonian.
- Dynamic maps, symplectic integrators.
- Integrable Hamiltonian.

Newtonian Mechanics

In Newtonian mechanics the key function is the force \mathbf{F} (a vector quantity). In general the force is a function of position \mathbf{r}, velocity $\dot{\mathbf{r}}$ and time t. The equation of motion of a particle of mass m subject to a force \mathbf{F} is (for a non-inertial frame of reference)

$$
\begin{equation*}
\frac{d}{d t}(m \dot{\mathbf{r}})=\mathbf{F}(\mathbf{r}, \dot{\mathbf{r}}, t) \tag{1}
\end{equation*}
$$

The dynamics are determined by solving N second order differential equations as a function of time. In a non-inertial frame we may need to consider fictitious forces.

Lagrangian Mechanics

In Lagrangian mechanics the key function is the Lagrangian (a scalar quantity)

$$
\begin{equation*}
L=L(q, \dot{q}, t) \tag{2}
\end{equation*}
$$

The solution to a given mechanical problem is obtained by solving a set of N second-order differential equations known as the Euler-Lagrange equations,

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=0 \tag{3}
\end{equation*}
$$

Principle of least action

The action S is the integral of L along the trajectory

$$
\begin{equation*}
S=\int_{t 1}^{t 2} L(q, \dot{q}, t) t \tag{4}
\end{equation*}
$$

The principle of least action or Hamilton's principle holds that the system evolves such that the action S is stationary. It can be shown that the Euler-Lagrange equation defines a path for which.

$$
\begin{equation*}
\delta S=\delta\left[\int_{t 1}^{t 2} L(q, \dot{q}, t) t\right]=0 \tag{5}
\end{equation*}
$$

Conservative force

In the case of a convervative force field the Lagrangian is the difference of the kinetic and potential energies

$$
\begin{equation*}
L(q, \dot{q})=T(q, \dot{q})-V(q) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
F=\frac{\partial V(q)}{\partial q} \tag{7}
\end{equation*}
$$

Advantages of Lagrangian approach

- The Euler-Lagrange is true regardless of the choice of coordinate system (including non-inertial coordinate systems). We can transform to convenient variables that best describe the symmetry of the system.
- It is easy to incorporate constraints. We formulate the Lagrangian in a configuration space where ignorable coordinates are removed (e.g. a mass constrained to a surface), thereby incorporating the constraint from the outset.

Particle on a cone

Consider a particle rolling due to gravity in a frictionless cone. The cone's opening angle α places a constraint on the coordinates $\tan \alpha=r / z$. We may write the Lagrangian in cylindrical coordinates

$$
\begin{equation*}
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)-m g z \tag{8}
\end{equation*}
$$

Reduce the number of coordinates by eliminating z

$$
\begin{equation*}
z=\frac{r}{\tan \alpha}, \dot{z}=\frac{\dot{r}}{\tan \alpha} \tag{9}
\end{equation*}
$$

Then the Lagrangian $L=T-V$ is given by

$$
\begin{equation*}
L=\frac{m}{2}\left[\left(1+\cot ^{2} \alpha\right) \dot{r}^{2}+r^{2} \dot{\theta}^{2}\right]-m g r \cot \alpha \tag{10}
\end{equation*}
$$

Write down the Euler-Lagrange equation for each coordinate (r, θ). For r we have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=0 \tag{11}
\end{equation*}
$$

We obtain the first equation of motion

$$
\left(1+\cot ^{2} \alpha\right) \ddot{r}-r \dot{\theta}^{2}+g \cot \alpha=0
$$

Likewise for θ

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=0
$$

leading to

$$
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0
$$

giving the second equation of motion

$$
2 \dot{r} \dot{\theta}+r \ddot{\theta}=0
$$

General electromagnetic fields

The Lagrangian for a particule in an EM field $U(x, \dot{x}, t)=e(\phi-\boldsymbol{v} \cdot \boldsymbol{A})$

$$
\begin{equation*}
L(x, \dot{x}, t)=-m c^{2} \sqrt{1-\beta^{2}}-e \phi+e \boldsymbol{v} \cdot \boldsymbol{A} . \tag{12}
\end{equation*}
$$

The conjugate (or canonical) momentum is

$$
\begin{equation*}
P_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=\frac{m \dot{x}_{i}}{\sqrt{1-\beta^{2}}}+e A_{i} \tag{13}
\end{equation*}
$$

i.e. the field contributes to the conjugate momentum.

Legendre transformation

The Legendre transform takes us from a convex ${ }^{1}$ function $F\left(u_{i}\right)$ to another function $G\left(v_{i}\right)$ as follows. Start with a function

$$
\begin{equation*}
F=F\left(u_{1}, u_{2}, \ldots, u_{n}\right) \tag{14}
\end{equation*}
$$

Introduce a new set of conjugate variables through the following transformation

$$
\begin{equation*}
v_{i}=\frac{\partial F}{\partial u_{i}} \tag{15}
\end{equation*}
$$

We now define a new function G as follows

$$
\begin{equation*}
G=\sum_{i=1}^{n} u_{i} v_{i}-F \tag{16}
\end{equation*}
$$

${ }^{1} \mathrm{~F}$ is convex in u if $\frac{\partial^{2} F}{\partial u^{2}}>0$

Apply Legendre's transformation to the Lagrangian

Start with the Lagrangian

$$
\begin{equation*}
L=L\left(q_{1}, \ldots, q_{n}, \dot{q}_{1}, \ldots, \dot{q}_{n}, t\right) \tag{17}
\end{equation*}
$$

and introduce some new variables we are going to call the $p_{i} \mathrm{~s}$

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}} . \tag{18}
\end{equation*}
$$

We can then introduce a new function H defined as

$$
\begin{equation*}
H=\sum_{i=1}^{n} p_{i} \dot{q}_{i}-L \tag{19}
\end{equation*}
$$

We now have a function which is dependent on q, p and time.

$$
\begin{equation*}
H=H\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}, t\right) \tag{20}
\end{equation*}
$$

L and H have a dual nature:

$$
\begin{aligned}
H & =\sum p_{i} \dot{q}_{i}-L \\
p_{i} & =\frac{\partial L}{\partial \dot{q}_{i}}
\end{aligned}
$$

$$
\begin{aligned}
L & =\sum_{\partial H} p_{i} \dot{q}_{i}-H \\
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} .
\end{aligned}
$$

Hamilton's canonical equations

Starting from Lagrange's equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q}
$$

and combining with

$$
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}
$$

leads to

$$
\begin{equation*}
\dot{p}_{i}=\frac{\partial L}{\partial q_{i}}=-\frac{\partial H}{\partial q_{i}} \tag{21}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \tag{23}
\end{equation*}
$$

which are called Hamilton's canonical equations. They are the equations of motion of the system expressed as $2 n$ first order differential equations.

In a conservative system the Hamiltonian represents the total energy

$$
H=T+V
$$

Phase space

In Hamiltonian mechanics, the canonical momenta $p_{i}=\delta L$ are promoted to coordinates on equal footing with the generalized coordinates q_{i}. The coordinates (q, p) are canonical variables, and the space of canonical variables is known as phase space.

Symmetry and Conservation Laws

A cyclic coordinate in the Langrangian is also cyclic in the Hamiltonian. Since $H(q, p, t)=\dot{q}_{i} p_{i}-L(q, \dot{q}, t)$, a coordinate q_{j} absent in L is also absent in H .
A symmetry in the system implies a cyclic coordinate which in turn leads to a conservation law (Noether's theorem).

$$
\begin{equation*}
\frac{\partial L}{\partial q_{j}}=0 \Longrightarrow \frac{\partial H}{\partial q_{j}}=0 \tag{24}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\dot{p_{j}}=0 \tag{25}
\end{equation*}
$$

so the momentum p_{j} is conserved.
Often we wish to simplify our problem by applying a transformation that exploits any symmetry in the system.

Canonical transformations

Transform from one set of canonical coordinates $\left(p_{i}, q_{i}\right)$ to another $\left(P_{i}, Q_{i}\right)$. The transformation should preserve the form of Hamilton's equations.

Old coordinates Hamiltonian: $H(q, p, t)$

$$
\begin{align*}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \tag{26}\\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}} \tag{27}
\end{align*}
$$

New coordinates
Kamiltonian: $K(Q, P, t)$

$$
\begin{align*}
\dot{Q}_{i} & =\frac{\partial K}{\partial P_{i}} \tag{28}\\
\dot{P}_{i} & =-\frac{\partial K}{\partial Q_{i}} \tag{29}
\end{align*}
$$

Preservation of Hamiltonian form

For the old Hamiltonian H it was true that

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}}\left(\sum_{i} p_{i} \dot{q}_{i}-H\left(q_{i}, p_{i}, t\right)\right) \mathrm{d} t=0 \tag{30}
\end{equation*}
$$

Likewise, for the new Hamiltonian K

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}}\left(\sum_{i} P_{i} \dot{Q}_{i}-K\left(Q_{i}, P_{i}, t\right)\right) \mathrm{d} t=0 \tag{31}
\end{equation*}
$$

This is true if

$$
\begin{equation*}
\lambda(p \dot{q}-H)=P \dot{Q}-K+\frac{\mathrm{d} F}{\mathrm{~d} t} \tag{32}
\end{equation*}
$$

where F is a generating function and we normally set $\lambda=1$

The function F is called the generating function of the canonical transformation and it depends on old and new phase space coordinates. It can take 4 forms corresponding to combinations of $\left(q_{i}, p_{i}\right)$ and $\left(Q_{i}, P_{i}\right)$:

$$
\begin{align*}
F & =F_{1}\left(q_{i}, Q_{i}, t\right) \tag{33}\\
F & =F_{2}\left(q_{i}, P_{i}, t\right) \tag{34}\\
F & =F_{3}\left(p_{i}, Q_{i}, t\right) \tag{35}\\
F & =F_{4}\left(p_{i}, P_{i}, t\right) \tag{36}
\end{align*}
$$

Generating function $F_{1}(q, Q, t)$

$$
\begin{align*}
& p_{i} \dot{q}_{i}-H=P_{i} \dot{Q}_{i}-K+\frac{\mathrm{d} F_{1}}{\mathrm{~d} t} \tag{37}\\
&=P_{i} \dot{Q}_{i}-K+\frac{\partial F_{1}}{\partial q_{i}} \dot{q}_{i}+\frac{\partial F_{1}}{\partial Q_{i}} \dot{Q}_{i}+\frac{\partial F_{1}}{\partial t} \tag{38}\\
&\left(p_{i}-\frac{\partial F_{1}}{\partial q_{i}}\right) \dot{q}_{i}-\left(P_{i}+\frac{\partial F_{1}}{\partial q_{i}}\right) \dot{Q}_{i}+K-\left(H+\frac{\partial F_{1}}{\partial t}\right)=0 \tag{39}
\end{align*}
$$

The old and new coordinates are separately independent so the coefficients of \dot{q}_{i} and \dot{Q}_{i} must each vanish leading to

$$
\begin{align*}
p_{i} & =\frac{\partial F_{1}}{\partial q_{i}} \tag{40}\\
P_{i} & =-\frac{\partial F_{1}}{\partial Q_{i}} \tag{41}\\
K & =H+\frac{\partial F_{1}}{\partial t} \tag{42}
\end{align*}
$$

F_{1} example

$$
\begin{equation*}
F_{1}(q, Q, t)=q Q \tag{43}
\end{equation*}
$$

This does not depend on time, so by equation 42 the new and original Hamiltonians are equal.

$$
\begin{align*}
p & =\frac{\partial F_{1}}{\partial q}=Q \tag{44}\\
P & =-\frac{\partial F_{1}}{\partial Q}=-q \tag{45}
\end{align*}
$$

This generating function essentially swaps the coordinates and momenta.

Generating function $F_{2}(q, P, t)$

Look for a function of the form

$$
\begin{equation*}
F=F_{2}(q, P, t)-Q_{i} P_{i} \tag{46}
\end{equation*}
$$

can show

$$
\begin{align*}
p_{i} & =\frac{\partial F_{2}}{\partial q_{i}} \tag{47}\\
Q_{i} & =\frac{\partial F_{2}}{\partial P_{i}} \tag{48}\\
K & =H+\frac{\partial F_{2}}{\partial t} \tag{49}
\end{align*}
$$

F_{2} example

$$
\begin{equation*}
F_{2}(q, P, t)=\sum_{i} q_{i} P_{i} \tag{50}
\end{equation*}
$$

This example generating function also does not depend on time so the new and original Hamiltonians are again equal. So

$$
\begin{align*}
& p_{i}=\frac{\partial F_{2}}{\partial q_{i}}=P_{i} \tag{51}\\
& Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}=q_{i} \tag{52}
\end{align*}
$$

This generating function is just the identity transformation, the coordinates and Hamiltonian are swapped into themselves.

Summary of generating functions

Generating function	Transformation equations	
$F=F_{1}(q, Q, t)$	$p_{i}=\frac{\partial F_{1}}{\partial q_{i}}$	$P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}$
$F=F_{2}(q, P, t)-Q_{i} P_{i}$	$p_{i}=\frac{\partial F_{2}}{\partial q_{i}}$	$Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}$
$F=F_{3}(p, Q, t)+q_{i} p_{i}$	$q_{i}=-\frac{\partial F_{3}}{\partial p_{i}}$	$P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}}$
$F=F_{4}(p, P, t)+q_{i} p_{i}-Q_{i} P_{i}$	$q_{i}=-\frac{\partial F_{4}}{\partial p_{i}}$	$Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}$

Action-angle variables

A Hamiltonian system can be written in action-angle form if there is a set of canonical variables (θ, I) such that H only depends on the action

$$
\begin{equation*}
H=H(I) \tag{53}
\end{equation*}
$$

Then

$$
\begin{equation*}
\dot{\theta}=\nabla H(I)=\omega(I), \quad \dot{I}=0 \tag{54}
\end{equation*}
$$

Example: Harmonic oscillator

The Hamiltonian for a harmonic oscillator is given

$$
\begin{equation*}
H=\frac{\omega}{2}\left(q^{2}+p^{2}\right) . \tag{55}
\end{equation*}
$$

This Hamiltonian is the sum of two squares, which suggest that one of the new coordinates is cyclic. Try a transformation to action-angle variables

$$
\begin{align*}
q & =\sqrt{\frac{2}{\omega}} f(P) \sin Q \tag{56}\\
p & =\sqrt{\frac{2}{\omega}} f(P) \cos Q \tag{57}
\end{align*}
$$

Then the new Hamiltonian

$$
\begin{equation*}
K=H=f^{2}(P)\left(\sin ^{2} Q+\cos ^{2} Q\right)=f^{2}(P) \tag{58}
\end{equation*}
$$

Take the ratio of the transformation equations

$$
\begin{equation*}
p=q \cot Q . \tag{59}
\end{equation*}
$$

This is independent of $f(P)$, and has the form of the $F_{1}(q, Q, t)$ type of generating function

$$
\begin{equation*}
p=\frac{\partial F_{1}}{\partial q} . \tag{60}
\end{equation*}
$$

The simplest form for F_{1} agreeing with the above is

$$
\begin{equation*}
F_{1}(q, Q)=\frac{1}{2} q^{2} \cot Q . \tag{61}
\end{equation*}
$$

We can then find P using the other transformation equation for F_{1}

$$
\begin{equation*}
P=-\frac{\partial F_{1}}{\partial Q}=\frac{1}{2} q^{2} \csc ^{2} Q=\frac{1}{2} \frac{q^{2}}{\sin ^{2} Q} . \tag{62}
\end{equation*}
$$

Rearrange for q

$$
\begin{equation*}
q=\sqrt{2 P \sin ^{2} Q}=\sqrt{2 P} \sin Q . \tag{63}
\end{equation*}
$$

Comparing this with equation 56 gives the function $f(P)$

$$
\begin{equation*}
f(P)=\sqrt{\omega P} \tag{64}
\end{equation*}
$$

The new Hamiltonian is therefore

$$
\begin{equation*}
K=\omega P \tag{65}
\end{equation*}
$$

This is cyclic in Q, so P is constant. The energy is constant and equal to K so

$$
\begin{gather*}
P=\frac{E}{\omega} . \tag{66}\\
\dot{Q}=\frac{\partial K}{\partial P}=\omega \tag{67}
\end{gather*}
$$

Symplecticity

A symplectic transformation M satisfies

$$
\begin{equation*}
M^{T} \Omega M=\Omega \tag{68}
\end{equation*}
$$

where

$$
\Omega=\left(\begin{array}{cc}
0 & \mathcal{I} \tag{69}\\
-\mathcal{I} & 0
\end{array}\right)
$$

Hamilton's equations in matrix form are

$$
\binom{\dot{q}_{i}}{\dot{p}_{i}}=\left(\begin{array}{cc}
0 & 1 \tag{70}\\
-1 & 0
\end{array}\right)\binom{\frac{\partial H}{\partial q_{i}}}{\frac{\partial H}{\partial p_{i}}}
$$

or in vector form

$$
\begin{equation*}
\dot{\zeta}=\Omega \nabla H(\zeta) \tag{71}
\end{equation*}
$$

where ζ is the vector of phase space coordinates.

It can be shown that the corresponding map M given by

$$
\begin{equation*}
\zeta(t)=M \zeta\left(t_{0}\right) \tag{72}
\end{equation*}
$$

has the symplectic property

$$
\begin{equation*}
M^{T}(t) \Omega M(t)=\Omega \tag{73}
\end{equation*}
$$

In Hamiltonian systems the equations of motion generate symplectic maps of coordinates and momenta and as a consequence preserve volume in phase space. This is equivalent to Liouville theorem which asserts that the phase space distribution function is constant along the trajectories of the system.

Liouville Integrability

The Liouville-Arnold theorem states that existence of n invariants of motion is enough to fully characterize a for an n degree-of-freedom system. In that case a canonical transformation exists to action angle coordinates in which the Hamiltonian depends only on the action.

Liouville integrability means that there exists a regular foliation of the phase space by invariant manifolds such that the Hamiltonian vector fields associated to the invariants of the foliation span the tangent distribution.

Poisson brackets

Let p and q be canonical variables and let u and v be functions of p and q. The Poisson bracket of u and v is defined as

$$
\begin{equation*}
[u, v]_{p, q}=\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}-\frac{\partial u}{\partial p} \frac{\partial v}{\partial q} \tag{74}
\end{equation*}
$$

From the definition of the Poisson bracket

$$
\begin{align*}
{\left[q_{i}, q_{j}\right] } & =\left[p_{i}, p_{j}\right]=0 \tag{75}\\
{\left[q_{i}, p_{j}\right] } & =-\left[p_{i}, q_{j}\right]=\delta_{i, j} . \tag{76}
\end{align*}
$$

A Poisson bracket is invariant under a change in canonical variables

$$
\begin{equation*}
[u, v]_{P, q}=[u, v]_{P, Q} . \tag{77}
\end{equation*}
$$

In other words, Poisson brackets are canonical invariants, which gives us an easy way to determine whether a set of variables is canonical.

Equations of motion with brackets

Hamilton's equations may be written in terms of Poisson brackets For a function $u=u\left(q_{i}, p_{i}, t\right)$ the total differential is

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\partial u}{\partial q_{i}} \dot{q}_{i}+\frac{\partial u}{\partial p_{i}} \dot{p}_{i}+\frac{\partial u}{\partial t} . \tag{78}
\end{equation*}
$$

We can replace \dot{q}_{i} and \dot{p}_{i} with their Hamiltonian solutions to obtain

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\partial u}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial u}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}+\frac{\partial u}{\partial t} \tag{79}
\end{equation*}
$$

which is just

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=[u, H]+\frac{\partial u}{\partial t} . \tag{80}
\end{equation*}
$$

If u is constant, then $\frac{\mathrm{d} u}{\mathrm{~d} t}=0$ and $[u, H]=-\frac{\partial u}{\partial t}$. If u does not depend explicitly on $t[u, H]=0$.
If $u=q$

$$
\begin{equation*}
\dot{q}=[q, H] . \tag{81}
\end{equation*}
$$

If $u=p$

$$
\begin{equation*}
\dot{p}=[p, H] . \tag{82}
\end{equation*}
$$

Which are just the equations of motion in terms of Poisson brackets.

Lie Transformations

Suppose we have some function of the phase space variables

$$
\begin{equation*}
f=f\left(x_{i}, p_{i}\right) \tag{83}
\end{equation*}
$$

which has no explicit dependence on the independent variable, s. However if we evaluate f for a particle moving along a beamline, the value of f will evolve with s as the dynamical variables evolve.
The rate of change of f with s is

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} s}=\sum_{i=1}^{n} \frac{\mathrm{~d} x_{i}}{\mathrm{~d} s} \frac{\partial f}{\partial x_{i}}+\frac{\mathrm{d} p_{i}}{\mathrm{~d} s} \frac{\partial f}{\partial p_{i}} \tag{84}
\end{equation*}
$$

Using Hamilton's equations

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} s}=\sum_{i=1}^{n} \frac{\partial H}{\partial p_{i}} \frac{\partial f}{\partial x_{i}}-\frac{\partial H}{\partial x_{i}} \frac{\partial f}{\partial p_{i}} \tag{85}
\end{equation*}
$$

We now define the Lie operator: g : for any function $g\left(x_{i}, p_{i}\right)$

$$
\begin{equation*}
: g:=\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \frac{\partial}{\partial p_{i}}-\frac{\partial g}{\partial p_{i}} \frac{\partial}{\partial x_{i}} \tag{86}
\end{equation*}
$$

Compare with the definition of a Poisson bracket

$$
\begin{equation*}
[u, v]_{p, q}=\frac{\partial u}{\partial q} \frac{\partial v}{\partial p}-\frac{\partial u}{\partial p} \frac{\partial v}{\partial q} \tag{87}
\end{equation*}
$$

If the Hamiltonian H has no explicit dependence on s we can write

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} s}=-: H: f \tag{88}
\end{equation*}
$$

We can express f at $s=s_{0}+\Delta s$ in terms of f at $s=s_{0}$ in terms of a Taylor series

$$
\begin{align*}
\left.f\right|_{s=s_{0}+\Delta s} & =\left.f\right|_{s=s_{0}}+\left.\Delta s \frac{\mathrm{~d} f}{\mathrm{~d} s}\right|_{s=s_{0}}+\left.\frac{\Delta s^{2}}{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} s^{2}}\right|_{s=s_{0}}+\ldots \tag{89}\\
& =\left.\sum_{m=0}^{\infty} \frac{\Delta s^{m}}{m!} \frac{\mathrm{d}^{m} f}{\mathrm{~d} s^{m}}\right|_{s=s_{0}} \tag{90}\\
& =\left.e^{\Delta s \frac{\mathrm{~d}}{\mathrm{ds}} f}\right|_{s=s_{0}} \tag{91}
\end{align*}
$$

This suggests the solution for equation 88 can be written as

$$
\begin{equation*}
\left.f\right|_{s=s_{0}+\Delta s}=\left.e^{-\Delta s: H:} f\right|_{s=s_{0}} . \tag{92}
\end{equation*}
$$

The operator $e^{-\Delta s: g: ~ i s ~ k n o w n ~ a s ~ a ~ L i e ~ t r a n s f o r m a t i o n, ~ w i t h ~ g e n e r a t o r ~} g$. In the context of accelerator beam dynamics, applying a Lie transformation with the Hamiltonian as the generator to a function f produces a transfer map for f.

- f can be any function of the dynamical variables
- Any Lie transformation represents the evolution of a conservative dynamical system, with Hamiltonian corresponding to the generator of the Lie transformation
- The map represented by a Lie transformation must be symplectic

