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Newtonian Mechanics

In Newtonian mechanics the key function is the force F (a vector
quantity). In general the force is a function of position r, velocity ṙ and
time t. The equation of motion of a particle of mass m subject to a force
F is (for a non-inertial frame of reference)

d

dt
(mṙ) = F(r, ṙ, t) (1)

The dynamics are determined by solving N second order differential
equations as a function of time. In a non-inertial frame we may need to
consider fictitious forces.
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Lagrangian Mechanics

In Lagrangian mechanics the key function is the Lagrangian (a scalar
quantity)

L = L(q, q̇, t) (2)

The solution to a given mechanical problem is obtained by solving a set of
N second-order differential equations known as the Euler-Lagrange
equations,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3)
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Principle of least action

The action S is the integral of L along the trajectory

S =

∫ t2

t1
L(q, q̇, t)t (4)

The principle of least action or Hamilton’s principle holds that the system
evolves such that the action S is stationary. It can be shown that the
Euler-Lagrange equation defines a path for which.

δS = δ

[∫ t2

t1
L(q, q̇, t)t

]
= 0 (5)
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Conservative force

In the case of a convervative force field the Lagrangian is the difference of
the kinetic and potential energies

L(q, q̇) = T (q, q̇)− V (q) (6)

where

F =
∂V (q)

∂q
(7)
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Advantages of Lagrangian approach

The Euler-Lagrange is true regardless of the choice of coordinate
system (including non-inertial coordinate systems). We can transform
to convenient variables that best describe the symmetry of the system.

It is easy to incorporate constraints. We formulate the Lagrangian in
a configuration space where ignorable coordinates are removed (e.g. a
mass constrained to a surface), thereby incorporating the constraint
from the outset.
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Particle on a cone

Consider a particle rolling due to gravity in a
frictionless cone. The cone’s opening angle α places
a constraint on the coordinates tanα = r/z . We
may write the Lagrangian in cylindrical coordinates

L =
m

2

(
ṙ2 + r2θ̇2 + ż2

)
−mgz (8)

Reduce the number of coordinates by eliminating z

z =
r

tanα
, ż =

ṙ

tanα
(9)

Then the Lagrangian L = T − V is given by

L =
m

2

[
(1 + cot2α)ṙ2 + r2θ̇2

]
−mgr cotα (10)
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Write down the Euler-Lagrange equation for each coordinate (r , θ). For r
we have

d

dt

(
∂L

∂ ṙ

)
− ∂L

∂r
= 0 (11)

We obtain the first equation of motion

(1 + cot2α)r̈ − r θ̇2 + gcotα = 0

Likewise for θ
d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

leading to
d

dt

(
mr2θ̇

)
= 0

giving the second equation of motion

2ṙ θ̇ + r θ̈ = 0
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General electromagnetic fields

The Lagrangian for a particule in an EM field U(x , ẋ , t) = e(φ− v · A)

L(x , ẋ , t) = −mc2
√

1− β2 − eφ+ ev · A. (12)

The conjugate (or canonical) momentum is

Pi =
∂L

∂ẋi
=

mẋi√
1− β2

+ eAi (13)

i.e. the field contributes to the conjugate momentum.
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Legendre transformation

The Legendre transform takes us from a convex1 function F (ui ) to
another function G (vi ) as follows. Start with a function

F = F (u1, u2, . . . , un). (14)

Introduce a new set of conjugate variables through the following
transformation

vi =
∂F

∂ui
. (15)

We now define a new function G as follows

G =
n∑

i=1

uivi − F (16)

1F is convex in u if ∂2F
∂u2 > 0
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Apply Legendre’s transformation to the Lagrangian

Start with the Lagrangian

L = L(q1, . . . , qn, q̇1, . . . , q̇n, t), (17)

and introduce some new variables we are going to call the pi s

pi =
∂L

∂q̇i
. (18)

We can then introduce a new function H defined as

H =
n∑

i=1

pi q̇i − L (19)
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We now have a function which is dependent on q, p and time.

H = H(q1, . . . , qn, p1, . . . , pn, t) (20)

L and H have a dual nature:

H =
∑

pi q̇i − L,

pi =
∂L

∂q̇i
,

L =
∑

pi q̇i − H,

q̇i =
∂H

∂pi
.
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Hamilton’s canonical equations

Starting from Lagrange’s equation

d

dt

(
∂L

∂q̇i

)
=
∂L

∂q

and combining with

pi =
∂L

∂q̇i

leads to

ṗi =
∂L

∂qi
= −∂H

∂qi
(21)
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So we have

q̇i =
∂H

∂pi
(22) ṗi = −∂H

∂qi
(23)

which are called Hamilton’s canonical equations. They are the equations
of motion of the system expressed as 2n first order differential equations.

In a conservative system the Hamiltonian represents the total energy

H = T + V
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Phase space

In Hamiltonian mechanics, the canonical momenta pi = δL are promoted
to coordinates on equal footing with the generalized coordinates qi . The
coordinates (q, p) are canonical variables, and the space of canonical
variables is known as phase space.
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Symmetry and Conservation Laws

A cyclic coordinate in the Langrangian is also cyclic in the Hamiltonian.
Since H(q, p, t) = q̇ipi − L(q, q̇, t), a coordinate qj absent in L is also
absent in H.
A symmetry in the system implies a cyclic coordinate which in turn leads
to a conservation law (Noether’s theorem).

∂L

∂qj
= 0 =⇒ ∂H

∂qj
= 0 (24)

Hence
ṗj = 0 (25)

so the momentum pj is conserved.
Often we wish to simplify our problem by applying a transformation that
exploits any symmetry in the system.
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Canonical transformations

Transform from one set of canonical coordinates (pi , qi ) to another
(Pi ,Qi ). The transformation should preserve the form of Hamilton’s
equations.

Old coordinates
Hamiltonian: H(q, p, t)

q̇i =
∂H

∂pi
(26)

ṗi = −∂H
∂qi

(27)

New coordinates
Kamiltonian: K (Q,P, t)

Q̇i =
∂K

∂Pi
(28)

Ṗi = − ∂K
∂Qi

(29)
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Preservation of Hamiltonian form

For the old Hamiltonian H it was true that

δ

∫ t2

t1

(∑
i

pi q̇i − H(qi , pi , t)

)
dt = 0 (30)

Likewise, for the new Hamiltonian K

δ

∫ t2

t1

(∑
i

Pi Q̇i − K (Qi ,Pi , t)

)
dt = 0 (31)

This is true if

λ(pq̇ − H) = PQ̇ − K +
dF

dt
(32)

where F is a generating function and we normally set λ = 1
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The function F is called the generating function of the canonical
transformation and it depends on old and new phase space coordinates. It
can take 4 forms corresponding to combinations of (qi , pi ) and (Qi ,Pi ):

F = F1(qi ,Qi , t) (33)

F = F2(qi ,Pi , t) (34)

F = F3(pi ,Qi , t) (35)

F = F4(pi ,Pi , t) (36)
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Generating function F1(q,Q, t)

pi q̇i − H = Pi Q̇i − K +
dF1

dt
(37)

= Pi Q̇i − K +
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F1

∂t
(38)(

pi −
∂F1

∂qi

)
q̇i −

(
Pi +

∂F1

∂qi

)
Q̇i + K −

(
H +

∂F1

∂t

)
= 0 (39)

The old and new coordinates are separately independent so the coefficients
of q̇i and Q̇i must each vanish leading to

pi =
∂F1

∂qi
(40)

Pi = −∂F1

∂Qi
(41)

K = H +
∂F1

∂t
(42)
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F1 example

F1(q,Q, t) = qQ (43)

This does not depend on time, so by equation 42 the new and original
Hamiltonians are equal.

p =
∂F1

∂q
= Q (44)

P = −∂F1

∂Q
= −q (45)

This generating function essentially swaps the coordinates and momenta.
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Generating function F2(q,P , t)

Look for a function of the form

F = F2(q,P, t)− QiPi (46)

can show

pi =
∂F2

∂qi
(47)

Qi =
∂F2

∂Pi
(48)

K = H +
∂F2

∂t
. (49)
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F2 example

F2(q,P, t) =
∑
i

qiPi (50)

This example generating function also does not depend on time so the new
and original Hamiltonians are again equal. So

pi =
∂F2

∂qi
= Pi (51)

Qi =
∂F2

∂Pi
= qi (52)

This generating function is just the identity transformation, the
coordinates and Hamiltonian are swapped into themselves.
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Summary of generating functions

Generating function Transformation equations

F = F1(q,Q, t) pi = ∂F1
∂qi

Pi = − ∂F1
∂Qi

F = F2(q,P, t)− QiPi pi = ∂F2
∂qi

Qi = ∂F2
∂Pi

F = F3(p,Q, t) + qipi qi = −∂F3
∂pi

Pi = − ∂F3
∂Qi

F = F4(p,P, t) + qipi − QiPi qi = −∂F4
∂pi

Qi = ∂F4
∂Pi
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Action-angle variables

A Hamiltonian system can be written in action-angle form if there is a set
of canonical variables (θ, I ) such that H only depends on the action

H = H(I ) (53)

Then

θ̇ = ∇H(I ) = ω(I ), İ = 0 (54)
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Example: Harmonic oscillator

The Hamiltonian for a harmonic oscillator is given

H =
ω

2

(
q2 + p2

)
. (55)

This Hamiltonian is the sum of two squares, which suggest that one of the
new coordinates is cyclic. Try a transformation to action-angle variables

q =

√
2

ω
f (P) sinQ (56)

p =

√
2

ω
f (P) cosQ. (57)

Then the new Hamiltonian

K = H = f 2(P)(sin2 Q + cos2 Q) = f 2(P). (58)
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Take the ratio of the transformation equations

p = q cotQ. (59)

This is independent of f(P), and has the form of the F1(q,Q, t) type of
generating function

p =
∂F1

∂q
. (60)

The simplest form for F1 agreeing with the above is

F1(q,Q) =
1

2
q2 cotQ. (61)

We can then find P using the other transformation equation for F1

P = −∂F1

∂Q
=

1

2
q2 csc2 Q =

1

2

q2

sin2 Q
. (62)
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Rearrange for q

q =
√

2P sin2 Q =
√

2P sinQ. (63)

Comparing this with equation 56 gives the function f (P)

f (P) =
√
ωP. (64)

The new Hamiltonian is therefore

K = ωP. (65)

This is cyclic in Q, so P is constant. The energy is constant and equal to
K so

P =
E

ω
. (66)

Q̇ =
∂K

∂P
= ω (67)
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Symplecticity

A symplectic transformation M satisfies

MTΩM = Ω (68)

where

Ω =

(
0 I
−I 0

)
(69)

Hamilton’s equations in matrix form are(
q̇i
ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi
∂H
∂pi

)
(70)

or in vector form
ζ̇ = Ω∇H(ζ) (71)

where ζ is the vector of phase space coordinates.
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It can be shown that the corresponding map M given by

ζ(t) = Mζ(t0) (72)

has the symplectic property

MT (t)ΩM(t) = Ω (73)

In Hamiltonian systems the equations of motion generate symplectic maps
of coordinates and momenta and as a consequence preserve volume in
phase space. This is equivalent to Liouville theorem which asserts that the
phase space distribution function is constant along the trajectories of the
system.
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Liouville Integrability

The Liouville-Arnold theorem states that existence of n invariants of
motion is enough to fully characterize a for an n degree-of-freedom
system. In that case a canonical transformation exists to action angle
coordinates in which the Hamiltonian depends only on the action.

Liouville integrability means that there exists a regular foliation of the
phase space by invariant manifolds such that the Hamiltonian vector fields
associated to the invariants of the foliation span the tangent distribution.

David Kelliher (Rutherford Appleton Laboratory) Hamiltonian Dynamics November 9, 2021 32 / 40



Poisson brackets

Let p and q be canonical variables and let u and v be functions of p and
q. The Poisson bracket of u and v is defined as

[u, v ]p,q =
∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
. (74)
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From the definition of the Poisson bracket

[qi , qj ] = [pi , pj ] = 0 (75)

[qi , pj ] = −[pi , qj ] = δi ,j . (76)

A Poisson bracket is invariant under a change in canonical variables

[u, v ]p,q = [u, v ]P,Q . (77)

In other words, Poisson brackets are canonical invariants, which gives us
an easy way to determine whether a set of variables is canonical.
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Equations of motion with brackets

Hamilton’s equations may be written in terms of Poisson brackets
For a function u = u(qi , pi , t) the total differential is

du

dt
=
∂u

∂qi
q̇i +

∂u

∂pi
ṗi +

∂u

∂t
. (78)

We can replace q̇i and ṗi with their Hamiltonian solutions to obtain

du

dt
=
∂u

∂qi

∂H

∂pi
− ∂u

∂pi

∂H

∂qi
+
∂u

∂t
(79)

which is just
du

dt
= [u,H] +

∂u

∂t
. (80)
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If u is constant, then du
dt = 0 and [u,H] = −∂u

∂t . If u does not depend
explicitly on t [u,H] = 0.
If u = q

q̇ = [q,H]. (81)

If u = p
ṗ = [p,H]. (82)

Which are just the equations of motion in terms of Poisson brackets.
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Lie Transformations

Suppose we have some function of the phase space variables

f = f (xi , pi ) (83)

which has no explicit dependence on the independent variable, s. However
if we evaluate f for a particle moving along a beamline, the value of f will
evolve with s as the dynamical variables evolve.
The rate of change of f with s is

df

ds
=

n∑
i=1

dxi
ds

∂f

∂xi
+

dpi
ds

∂f

∂pi
. (84)

Using Hamilton’s equations

df

ds
=

n∑
i=1

∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi
. (85)
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We now define the Lie operator : g : for any function g(xi , pi )

: g :=
n∑

i=1

∂g

∂xi

∂

∂pi
− ∂g

∂pi

∂

∂xi
. (86)

Compare with the definition of a Poisson bracket

[u, v ]p,q =
∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
. (87)

If the Hamiltonian H has no explicit dependence on s we can write

df

ds
= − : H : f . (88)
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We can express f at s = s0 + ∆s in terms of f at s = s0 in terms of a
Taylor series

f |s=s0+∆s = f |s=s0 + ∆s
df

ds

∣∣∣∣
s=s0

+
∆s2

2

d2f

ds2

∣∣∣∣
s=s0

+ . . . (89)

=
∞∑

m=0

∆sm

m!

dmf

dsm

∣∣∣∣
s=s0

(90)

= e∆s d
ds f
∣∣
s=s0

. (91)

This suggests the solution for equation 88 can be written as

f |s=s0+∆s = e−∆s:H:f
∣∣
s=s0

. (92)
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The operator e−∆s:g : is known as a Lie transformation, with generator g .
In the context of accelerator beam dynamics, applying a Lie
transformation with the Hamiltonian as the generator to a function f
produces a transfer map for f .

f can be any function of the dynamical variables

Any Lie transformation represents the evolution of a conservative
dynamical system, with Hamiltonian corresponding to the generator
of the Lie transformation

The map represented by a Lie transformation must be symplectic
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