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plasma as an accelerator

~ 50 µm; ~ 100 GV/m

~ 1 m; ~ 40 MV/m

‣ Conventional Accelerators are large (100 metres) and expensive 
10-100M$ 

‣ Conventional accelerators cannot achieve better than a few 10 MV/m 
or you get breakdown 

‣ Plasma waves are a possible alternative - providing a route to 
university scale accelerators and radiation sources

a section of RF cavity

a plasma wave



why do we want to use a laser-plasma accelerator? 

‣ Conventional particle 
accelerators are large and 
expensive machines 

‣ Plasma based 
accelerators are a 
possible compact 
alternative 

‣ in particular we are now 
quite good at accelerating 
electrons to ~ 1 GeV with 
~ 100 TW lasers

Diamond light source 
3 GeV electron beam ~ £300 M

Astra Gemini Laser  
1 GeV electron beam ~ £3 M



Wakefield acceleration

boat

wake

‣ when a boat travels through water it 
produces a wave behind it - a ‘wake’ 

‣ the phase velocity of the wave is just the 
speed of the boat 

‣ so we can use a laser pulse travelling at 
close to c in a plasma to drive a strong 
wave behind it. 

‣ The wave in this case is an electron 
plasma oscillation  

‣ Because these are high frequency 
oscillations the ions do not move and we 
can have very strong electric fields 
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Driving Force

‣ For laser wakefield accelerators wake driven by ponderomotive force 

‣ For particle beam drivers wake driven by space charge field of drive 
bunch
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‣ This simple derivation was for low intensity (a0 < 1)  also called non-
relativistic intensities (I < 1018 Wcm-2).   

‣ How do we extend to high intensities? 

‣ method 1) just replace me c2 with γme c2- but do it at the right stage
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‣ method 2) do it properly solving the equation of motion relativistically 
(see Quesnel + Mora Phys Rev E 1998)
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Driving relativistic plasma waves

‣ The drive pulse of an intense laser pulse pushes away electrons just like 
a boat pushes away the water 

‣ The much heavier ions are left behind - this charge separation makes a 
very large electric field 

‣ As the electrons rush back to their original position they overshoot 
forming a plasma wave 

‣ Plasma wave amplitude is largest if the drive duration is less than the 
plasma wavelength c⇥L < �p



Driving Plasma waves

‣ The picture of wakefield I have shown so far is from a particle-in-cell 
numerical simulation 

‣ But  is it possible to “see” the plasma wave directly in experiments?

‣ Yes! This is using a technique called Fourier domain holography (Matlis Nature 
Physics 2006)

simulationexperiment



Driving Plasma waves

‣ The picture of wakefield I have shown so far is from a particle-in-cell 
simulation 

‣ But  is it possible to “see” the plasma wave directly in experiments?
‣ Using an ultra-short (7 fs) probe beam allows the wakefield to be directly imaged 

using shadowgraphy (Buck Nature Physics 2011) 

‣ Using a technique called Faraday rotation they can even see the magnetic field in 
the first plasma wave period due to the electron current
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Phase velocity and wavelength of plasma waves

‣ The laser pulse speed determines the wavelength and phase 
velocity. 

‣ Think of each electron as a separate oscillator, that is set in motion 
by the laser when the laser gets to it. 

‣ If the first electron (at z = 0) is set in motion at t = 0, the next electron 
(at z = Δz) will start oscillating at  t = Δt = Δz/vg  where is the velocity of 
the laser pulse in the plasma (group velocity) 

‣ there will be a wave with a phase velocity of  vp = Δz/Δt  = vg 

‣ The wavelength will therefore be 
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Phase velocity and wavelength of plasma waves

�p ' 10 µm at ne ≃ 1019 cm-3

(for λ = 800 nm laser )

Buck Nature Physics 2011

‣ The wavelength of plasma 
waves is also experimentally 
verifiable
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Dephasing

‣ electrons travel slightly faster than the wave - eventually they stop 
being accelerated, this is called “dephasing”



Limits to Acceleration:  1) Dephasing

‣ Relativistic electrons (ve/c = βe → 1) accelerating in the wave will 
move ahead of the wave which is moving at 

‣ The time it takes the electron to move half a plasma wave out of 
phase (i.e. from accelerating to decelerating field) is:
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‣ Dephasing length < 8 mm at ne = 4 x 1018 cm-3 

‣ Dephasing is the fundamental limit to energy gain in LWFA
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Limits to Acceleration:  2) pump depletion

‣ Creating the plasma wave takes energy - this 
must come from the drive pulse.
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Limits to acceleration:  3) diffraction

‣ We need to keep the laser intense over the entire interaction  

‣ Distance over which a laser diffracts in vacuum is the Rayleigh 
Range 

zR =
⇥w2

0

�0

‣ For zR = 1 cm we need focal spots ~  50 µm - difficult to make very 
intense focal spot this large  

‣ (e.g.  you need P > 90 TW for a0 = 1)



Limits to acceleration:  3) diffraction

‣ To overcome diffraction we need to guide the laser - an optical 
fibre 

‣ Can’t use a normal optical fibre - it will damage! 

• plasma waveguide - plasma density minimum on axis 

‣ Pre-formed plasma waveguides (Hooker group) 

‣ Self-guiding - pulse forms its own waveguide



Limits to acceleration

‣ Currently laser driven experiments are mostly limited by 
dephasing… 



The blow-out regime

‣ If the drive beam is strong enough then it can completely expel all the 
electrons from near the laser pulse - we call this the blow-out or bubble 
regime

laser driver



The blow-out regime

‣ If the drive beam is strong enough then it can completely expel all the 
electrons from near the laser pulse - we call this the blow-out or bubble 
regime

beam driver



The bubble regime: the bubble size

‣ we can estimate rb by balancing the ponderomotive force and 
space charge force of the ionic bubble
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The bubble regime: the field strength

‣ Using the equation for the electric field  

‣ And the blow-out radius

E(r) = en0r/�0

‣ we can estimate the field strength of the bubble - it is: 

rb ⇡ 2
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‣ For a0 ≈3 and a plasma density of n0 = 4 x 1018 cm-3 we get a 
maximum field of 330 GV/m ! 

‣ Combining this with the dephasing length we would get a maximum 
electron energy of 2.4 GeV 

- this is an overestimate as non-linear effects make the group velocity a bit 
slower
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Injecting electrons into the wave

‣ For a surfer to “catch a wave” he must swim to get up to speed 
before the wave arrives 

‣ if he is too slow the wave will just pass over him 

‣ we must find a way of accelerating electrons up to the correct 
speed for them to be trapped by the wave and accelerated

too slow



self-injection

‣ Nature is kind to us - when the wakefield has a large enough 
amplitude some electrons can be trapped 

‣ They are all injected at the back of the bubble so can be 
accelerated to the same energy - quasi-monoenergetic electron 
beams



self-injection

‣ this a plot of the longitudinal position ( ξ = z-ct ) in the wave against the 
longitudinal momentum pz (called the pz–ξ phase space) 

• The black arrows show electron trajectories 

• Trapped electrons follow closed orbits 

‣ self-injection in the bubble only happens over a small range of ξ at the 
back of the bubble  

‣ phase space rotation exchanges initial spread in pz for spread in ξ 

ξ (z - ct)

pz

1

2



self-injection

ξ

pz

electron spectrum

‣ This animation demonstrates how phase space rotation changes the 
electron spectrum 



what sort of electron beams can we get?

‣ Back in 2004 the Imperial College group, a group in the 
US (LBNL) and a group in France (LOA) were the first to 
report  narrow energy spread beams from a laser 
wakefield accelerator

high plasma density

low plasma density

Faure et al Nature 2004

a b

c d

Mangles et al Nature 2004

Geddes Nature 2004



extending the energy range

Leemans  PRL 2014

‣Progress in energy gain has been rapid  

‣ 0.2 MeV  in 2004 to 4.2 GeV in 2014 : 
20 x increase in 10 years 

‣ increase in beam energy due to 
increasing laser powers 

‣ allows operation at lower density 
(limited by dephasing)

Wang NCOMMS 2013
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advanced injection schemes

‣ This section will briefly discuss some other injection schemes: 

• external injection 

• colliding pulse injection 

• density down ramp injection (slow ramps and fast ramps) 

• ionisation injection



external injection

‣ uses a conventionally produced 
electron beam and tries to put it 
into the correct part of the plasma 
wave 

‣ requires exquisite alignment and 
timing between the electron beam 
and the laser  

‣ requires a very small, short 
electron bunch (σz, σx,y < λp)   

‣ usually the idea is to operate in a 
linear or quasi-linear regime as 
this is thought to be more stable

van der Wiel M, Phil. Trans. R. Soc. A 2006



colliding pulse injection

‣ A moderately intense laser drives a non-linear plasma wave (but below 
the self-injection threshold) 

‣ A second laser pulse collides with the first - the resulting interaction or 
“beatwave” heats the plasma at the interaction point 

‣ Electrons in this hot-spot can then become trapped in the plasma wave

Faure, Nature 2006



colliding pulse injection

‣ Colliding pulses can produce very stable electron beams 

‣ choosing the position of the collision in the gas jet allows the electron 
beam energy to be tuned 
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density down-ramp injection

‣ By allowing laser to travel down a density down-ramp the plasma 
wave phase velocity can be made to slow down 

‣  A slow phase velocity means electrons can be easily trapped 

‣ If a constant density region is placed after the down-ramp these 
electrons can be accelerated to high-energy

Bulanov PRE 1998, Geddes PRL 2008, Gonsalves Nature Physics 2011



density down-ramp injection

‣ By tuning the position of the 
laser focus relative to the 
down-ramp the position of 
injection can be controlled 

‣ This allows some tunablilty 
in the electron beam energy 

‣ Electrons produced from 
down-ramp can be 
remarkably stable (1 % 
level)

Gonsalves Nature Physics 2011



density down-ramp injection

‣ An alternative down-ramp injection 
scheme uses a sharp down-ramp 
( ~ λp ) 

‣ This sharp density down-ramp 
injection works because electrons 
that are oscillating in the wave 
suddenly feel no restoring force 
and so are injected into the wave
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density down-ramp injection

‣ These sharp profiles can be 
achieved using obstructed 
supersonic gas jets 

‣ Density transition injection also 
produces pretty stable electron 
beams

Schmid PRSTAB 2010



mec

ionisation injection

‣ Gas mixture e.g. He:N2 (95:5) 

‣ Helium and outer electrons of 
nitrogen are ionised early and 
supply the electrons to create the 
plasma wave 

‣ Inner electrons of Nitrogen are only 
ionized near the peak laser 
intensity - i.e. inside the bubble

a) electrons from helium and outer shells of nitrogen

b) electrons from inner shells of nitrogen

Pak PRL 2010 and McGuffey PRL 2010



ionisation injection

‣ These electrons that are “born” inside 
the bubble are much more easily 
trapped  

• this lowers the injection threshold 
• and increases the charge trapped 

‣ Ionisation injection is continuous so 
leads to large energy spreads - 
beyond 1 GeV has been observed

Pak PRL 2010

 McGuffey PRL 2010

Clayton PRL 2010



ionisation injection

‣ By using a two-compartment 
gas cell: 

• the first compartment containing 
the injection gas, 

• the second only containing helium 

‣ the continuous injection 
problem can be overcome

Liu PRL 2011

Pollock PRL 2011



Wakefield accelerators as a radiation source

‣ Wakefield accelerators now reaching multi-GeV levels with 
~100 TW lasers 

‣ This is energy range for conventional synchrotrons 

• Can we use plasma wakefield accelerators as a light source?



LWFA as undulator radiation source

‣ MPQ/Oxford Collaboration  
• 0.5 cm undulator wavelength, electron 

energies up to 200 MeV 
• monochromatic radiation at ~20 nm = 60 eV

� =
�u

2�2

Fuchs Nature Phys 2009Schlenvoigt Nature Phys 2007



‣ the bubble has very strong focusing forces as well as 
accelerating ones 

‣ this leads to transverse oscillations of the electron as it 
accelerates - called “betatron oscillations” 

‣ frequency of oscillations is plasma frequency for radial 
oscillations of relativistic beam 

‣ wavelength of this “plasma wiggler” can be very short 

‣  for ne = 1019 cm-3 and 200 MeV electrons it is 300 µm

LWFA as wiggler radiation source
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LWFA as wiggler radiation source

‣ Betatron radiation was first observed from a LWFA by Rousse et al        
(PRL 2004)  

‣ 30 TW laser   
‣ broad band ~ 100 MeV electrons 
‣ radiation at  ~ 1 keV 



LWFA as wiggler radiation source

‣ higher laser power (70 TW) 
‣ higher electron energies (400 MeV) 

• very small source (< 3 µm),   very short duration (~ 30 fs) 
• x-rays at 10 keV
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LWFA as wiggler radiation source

‣ Due to the small source size and short pulse, duration our x-ray 
source is very bright - 

‣ peak brightness is comparable to conventional synchrotron (not 
average brightness though)
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Scaling to higher photon energies

‣ x-ray radiation scales with laser power 

‣ This is due to fact that we can accelerate higher energy electrons 
with higher power lasers

data from: 
Mangles APL 2009 (Lund) 
Kneip Nature Phys 2010 (Michigan) 
Astra Gemini 2014 (to be published)



applications of betatron radiation

‣ high definition, high resolution imaging 
using phase contrast, 

‣ possible because of the very small source 
size

100 µm
Kneip Applied Physics Letters 2011 Fourmaux Optics Letters 2011

Gemini 2011 experiment



applications of betatron radiation

‣ Betatron sources now have properties needed to do useful medical 
imaging 

• e.g. tomography of human bone samples  

• high photon energy 
• small source size 
• reliability to take many shots per sample
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applications of betatron radiation

‣ Ultra-short X-ray flash can be 
used to freeze rapid motion  

‣ Direct imaging of shock waves 
travelling through matter 
(travelling at many km/s) 

‣ Could help our understanding of 
the material properties inside 
stars and planets



Summary

‣ This lecture has covered: 
• introduction to laser wakefield acceleration 

• driving plasma waves with lasers 

• injecting electrons into plasma waves 

• introduction to x-ray generation in laser wakefield 
accelerators 

• undulators and wigglers 

• betatron radiation 

‣ Any questions? 

stuart.mangles@imperial.ac.uk
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