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plasma as an accelerator

~1m; ~ 40 MV/m
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~ 50 um; ~ 100 GV/m

a plasma wave

a section of RF cavity

Conventional Accelerators are large (100 metres) and expensive
10-100M$

Conventional accelerators cannot achieve better than a few 10 MV/m
or you get breakdown

Plasma waves are a possible alternative - providing a route to
university scale accelerators and radiation sources



why do we want to use a laser-plasma accelerator?

Diamond light source
3 GeV electron beam ~ £300 M

Astra Gemini Laser
1 GeV electron beam ~ £3 M

Conventional particle
accelerators are large and
expensive machines

Plasma based
accelerators are a
possible compact
alternative

In particular we are now
quite good at accelerating
electrons to ~ 1 GeV with
~ 100 TW lasers



Wakefield acceleration

boat
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when a boat travels through water it
produces a wave behind it - a ‘wake’

the phase velocity of the wave is just the
speed of the boat

SO we can use a laser pulse travelling at
close to ¢ Iin a plasma to drive a strong
wave behind it.

The wave In this case Is an electron
plasma oscillation
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Because these are high frequency
oscillations the ions do not move and we
can have very strong electric fields




Driving Force

» For laser wakefield accelerators wake driven by ponderomotive force
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» For particle beam drivers wake driven by space charge field of drive
bunch
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Ponderomotive Force

This simple derivation was for low intensity (ap < 1) also called non-
relativistic intensities (I < 1018 Wem-2).

How do we extend to high intensities”

method 1) just replace me ¢? with yme ¢- but do it at the right stage
2
e 1 1
F, = V(E?) = ——m.c*—V{a*)
T 2(y)mews 2 ()

method 2) do it properly solving the equation of motion relativistically
(see Quesnel + Mora Phys Rev E 1998)

1 1
F, = ——muc?—V{a?
. 2mc<’y> (a”)




Driving relativistic plasma waves

The drive pulse of an intense laser pulse pushes away electrons just like
a boat pushes away the water

The much heavier ions are left behind - this charge separation makes a
very large electric tield

As the electrons rush back to their original position they overshoot
forming a plasma wave

Plasma wave amplitude is largest if the drive duration is less than the
plasma wavelength et < A
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Driving Plasma waves

The picture of wakefield | have shown so far is from a particle-in-cell
numerical simulation

But is it possible to “see” the plasma wave directly in experiments”?

» Yes! This is using a technique called Fourier domain holography (Matlis Nature
Physics 2006)

simulation

experiment

-
‘-

L0000

Radial distance (um)
o

(peJ) Yuys aseyd

|
3

| | -100 ,
800 600 400 200 0 -200 800 600 400 200
Time (fs) Time (fs)

(e-wo g,01) Ausuap ua}I?3



Driving Plasma waves

» Using a technique called Faraday rotation they can even see the magnetic tield In
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longitudinal position (Wdvert et al arxiv:1402.3052



Phase velocity and wavelength of plasma waves

The laser pulse speed determines the wavelength and phase
velocity.

Think of each electron as a separate oscillator, that is set in motion
by the laser when the laser gets to it.

If the first electron (at z = 0) is set in motion at ¢t = 0, the next electron
(at z = 4z) will start oscillating at ¢t = At = Az/vs where is the velocity of
the laser pulse in the plasma (group velocity)

there will be a wave with a phase velocity of v, = Az/At = v,

The wavelength will therefore be 270, 9

=
p p




A, (um)

Phase velocity and wavelength of plasma waves

Buck Nature Physics 2011

» The wavelength of plasma
waves Is also experimentally
verifiable

n, (x10™ cm™) Ap = 10 pm  at ne = 10" cm
(for A = 800 nm laser )



Dephasing

» electrons travel slightly faster than the wave - eventually they stop
being accelerated, this is called "dephasing”



Limits to Acceleration: 1) Dephasing

» Relativistic electrons (ve/c = . — I) accelerating in the wave will
move ahead of the wave which is moving at

The time it takes the electron to move half a plasma wave out of
phase (i.e. from accelerating to decelerating field) is:

)\p ~ )\p e L _
20(66_6]9) e Ne w pne

tg =

Dephasing length < 8 mm at ne = 4 x 1018 cm-3

Dephasing is the fundamental limit to energy gain in LWFA



Limits to Acceleration: 2) pump depletion

» Creating the plasma wave takes energy - this
must come from the drive pulse.

1

2 . . . MeCwy
Uplasma = ZGOEzO plasma wave electric field energy density E.no=0 -
Whlasma = Uplasma AL energy in plasma wave cross section A, length L
2 . . g i e CW(
Ulaser = =€0li7 o laser electric and magnetic field energy density Ero = ag
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Wiaser = Ulasor AcTr €Nergy in laser pulse wave cross section A, duration 1 ¢c7 = € )\p
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we can tailor parameters so pump depletion > dephasing



Limits to acceleration: 3) diffraction

We need to keep the laser intense over the entire interaction

Distance over which a laser diffracts in vacuum is the Rayleigh
Range Tw?

KR — —V——
A0

For zr = 1 cm we need focal spots ~ 50 um - difficult to make very
iIntense focal spot this large

> (e.g. youneed P > 90 TW forag = 1)



Limits to acceleration: 3) diffraction

4

4

4

4

To overcome diffraction we need to guide the laser - an optical
fibre

Can'’t use a normal optical fibre - it will damage!
plasma waveguide - plasma density minimum on axis
Pre-formed plasma waveguides (Hooker group)

Self-guiding - pulse forms its own waveguide



Limits to acceleration

»  Currently laser driven experiments are mostly limited by
dephasing...



The blow-out regime

laser driver
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It the drive beam is strong enough then it can completely expel all the
electrons from near the laser pulse - we call this the blow-out or bubble
regime



The blow-out regime

240 245 250 255
X, [c/w]

It the drive beam is strong enough then it can completely expel all the
electrons from near the laser pulse - we call this the blow-out or bubble
regime



The bubble regime: the bubble size

» we can estimate r, by balancing the ponderomotive force and
space charge force of the ionic bubble

Fp = —lmeczva—z V-E= —elne —mi) _ eno
2 9 €0 €0
v V142 ~a E(r) =~ engr/eg
2
F, ~ mec2ag /w; Fio = —e“ngr/eg

MeC"— — =0
Wo €0
It turns out that the situation Is
A 0 best if the laser spot size is ry R 2 /_aoi
b 2 matched to the bubble so we W
p W0 p
have:




The bubble regime: the field strength

Using the equation for the electric field E(r) =engr/eg
And the blow-out radius ry & 2\/%&
Wp

we can estimate the field strength of the bubble - it is:

Emam ~ vV a0

M CWy,

€

For ap =3 and a plasma density of np = 4 x 1018 cm=3 we get a
maximum field of 330 GV/m !

Combining this with the dephasing length we would get a maximum
electron energy of 2.4 GeV

- this is an overestimate as non-linear effects make the group velocity a bit
slower



Injecting electrons into the wave

too slow

For a surfer to “catch a wave”™ he must swim to get up to speed
before the wave arrives

If he is too slow the wave will just pass over him

we must find a way of accelerating electrons up to the correct
speed for them to be trapped by the wave and accelerated



self-injection

» Nature is kind to us - when the waketfield has a large enough
amplitude some electrons can be trapped

» They are all injected at the back of the bubble so can be
accelerated to the same energy - quasi-monoenergetic electron
beams



self-injection

>
E(z-ct)

p this a plot of the longitudinal position ( & = z-ct ) in the wave against the
longitudinal momentum p: (called the p—~¢ phase space)

® [he black arrows show electron trajectories

@ Irapped electrons follow closed orbits

p self-injection in the bubble only happens over a small range of ¢ at the
back of the bubble

p phase space rotation exchanges initial spread in p- for spread in &



self-injection
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p This animation demonstrates how phase space rotation changes the
electron spectrum



what sort of electron beams can we get?

» Back in 2004 the Imperial College group, a group in the
US (LBNL) and a group in France (LOA) were the first to
report narrow energy spread beams from a laser
wakefield accelerator
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extending the energy range
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» Progress Iin energy gain has been rapid
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iIncrease in beam energy due to
iIncreasing laser powers

allows operation at lower density
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advanced injection schemes

» This section will briefly discuss some other injection schemes:
e external injection
e colliding pulse injection
e density down ramp injection (slow ramps and fast ramps)

® |onisation injection



external injection

RF photo-injector

/ /RF incoupling

flat mirror
with hole

parabolic mirror

Ti:sapphire laser
100 wJ/100 mJ

solenoid lens

uses a conventionally produced
electron beam and tries to put it
iNnto the correct part of the plasma
wave

requires exquisite alignment and
timing between the electron beam
and the laser

requires a very small, short
electron bunch (oz, oxy < 4y)

usually the idea is to operate in a
linear or quasi-linear regime as
this is thought to be more stable

van der Wiel M, Phil. Trans. R. Soc. A 2006



colliding pulse injection

¢) Electron bunch

\ Ay

A moderately intense laser drives a non-linear plasma wave (but below
the self-injection threshold)

A second laser pulse collides with the first - the resulting interaction or
‘beatwave” heats the plasma at the interaction point

Electrons in this hot-spot can then become trapped in the plasma wave

Faure, Nature 2006



colliding pulse injection

Late injection Early injection
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» Colliding pulses can produce very stable electron beams

» choosing the position of the collision in the gas jet allows the electron
beam energy to be tuned

Faure, Nature 2006



density down-ramp injection

Electron density
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By allowing laser to travel down a density down-ramp the plasma
wave phase velocity can be made to slow down

A slow phase velocity means electrons can be easily trapped

If a constant density region is placed after the down-ramp these
electrons can be accelerated to high-energy

Bulanov PRE 1998, Geddes PRL 2008, Gonsalves Nature Physics 201 |



density down-ramp injection

Charge density
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density

down-ramp injection

density /cm-3
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5E+17
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An alternative down-ramp injection
scheme uses a sharp down-ramp
~ A

This sharp density down-ramp
Injection works because electrons
that are oscillating in the wave
suddenly feel no restoring force
and so are injected into the wave




density down-ramp injection
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(a) Self injection (b) Injection at density transition

These sharp profiles can be
achieved using obstructed
supersonic gas jets

Density transition injection also
produces pretty stable electron
beams
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lonisation injection

a) electrons from helium and outer shells of nitrogen

b) electrons from inner shells of nitrogen

Pak PRL 2010 and McGuffey PRL 2010

Gas mixture e.g. He:N2 (95:5)

Helium and outer electrons of
nitrogen are ionised early and
supply the electrons to create the
plasma wave

Inner electrons of Nitrogen are only
lonized near the peak laser
iIntensity - I.e. inside the bubble



lonisation injection

» These electrons that are “born” inside
the bubble are much more easily
trapped

e this lowers the injection threshold

e and increases the charge trapped

» lonisation injection IS continuous SO
leads to large energy spreads -
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lonisation injection

LWFA 1 (He/O,) LWFA 2 (He)

r

Driving Laser

I mm .
| mm » By using a two-compartment
Liu PRL 2011
gas cell:
1 e the first compartment containing

Injector  Injector +

0.8+ only Accelerator - the injection gas,

g 0.6 340 MeV . e the second only containing helium
o 35 pC /" | niect
% 0.4 N\ 25 nC P - » the continuous injection
i problem can be overcome
0.2 i
0 - T e
200 400 600

MeV' boliock PRL 2011



Wakefield accelerators as a radiation source

» Wakefield accelerators now reaching multi-GeV levels with
~100 TW lasers

» Thisis energy range for conventional synchrotrons

e (Can we use plasma wakefield accelerators as a light source?



LWFA as undulator radiation source
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» MPQ/Oxford Collaboration

e (0.5 cm undulator wavelength, electron
energies up to 200 MeV

25+

Undulator wavelength (nm)

N
o

e monochromatic radiation at ~20 nm = 60 eV

w
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Electron energy (MeV)

Schlenvoigt Nature Phys 2007 Fuchs Nature Phys 2009



LWFA as wiggler radiation source

4

the bubble has very strong focusing forces as well as
accelerating ones

this leads to transverse oscillations of the electron as it
accelerates - called “betatron oscillations”

frequency of oscillations is plasma frequency for radial
oscillations of relativistic beam 5 = 2P

V27
wavelength of this “plasma wiggler” can be very short )5 =, /29N,

for ne = 107 cm=3and 200 MeV electrons it is 300 um



LWFA as wiggler radiation source

X-ray beam

EX>3 keV 20 mrad
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Betatron radiation was first observed from a LWFA by Rousse et al
(PRL 2004)

30 TW laser
broad band ~ 100 MeV electrons
radiation at ~ 1 keV



LWFA as wiggler radiation source
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Imperial College /Michigan groups: Kneip Nature Phys 2010

» higher laser power (70 TW)
» higher electron energies (400 MeV)

e very small source (< 3 um), very short duration (~ 30 fs)
e Xx-rays at 10 keV



LWFA as wiggler radiation source
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Due to the small source size and short pulse, duration our x-ray
source is very bright -

peak brightness is comparable to conventional synchrotron (not
average brightness though)



Scaling to higher photon energies

100.0

I0.0 data from:
Mangles APL 2009 (Lund)
Kneip Nature Phys 2010 (Michigan)
Astra Gemini 2014 (to be published)

Ec [keV]

o

0 100 200 300
Laser Power [TW]
» X-ray radiation scales with laser power

» This is due to fact that we can accelerate higher energy electrons
with higher power lasers



applications of betatron radiation

v e oL

Kneip Applied i’hysics Letters 201 |

Fourmaux Optics Letters 201 |

» high definition, high resolution imaging
using phase contrast,

» possible because of the very small source
size




applications of betatron radiation

90° 180°

0 JM Cole et al (submitted) 2015

Betatron sources now have properties needed to do useful medical
imaging
e e.g.tomography of human bone samples
e high photon energy

e small source size
e reliability to take many shots per sample



applications of betatron radiation

» Ultra-short X-ray flash can be
o used to freeze rapid motion
.
N » Direct imaging of shock waves

travelling through matter
E (travelling at many km/s)

» Could help our understanding of
the material properties inside
stars and planets




Summary

» This lecture has covered:
e |ntroduction to laser wakefield acceleration

o driving plasma waves with lasers

o injecting electrons into plasma waves

e |ntroduction to x-ray generation in laser wakefield
accelerators

o undulators and wigglers

° betatron radiation

» Any questions”

stuart.mangles@imperial.ac.uk
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