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Introduction to H→ɣɣ
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Introduction to the Higgs Boson
● The Higgs mass is not predicted by 

theory, but all properties of the Higgs 
boson are a function of MH

– This motivates a precision measurement

● The two most common precision 
measurement channels are 
H→ZZ*→4l and H→ɣɣ 

● Although the branching ratio is small, 
the diphoton channel is fully 
reconstructed and the CMS ECAL 
was literally built for observation of 
the Higgs in this channel

● This channel shows up beautifully 
over the background
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Current Results
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Current Higgs Mass Measurements

● Results recently published in Phys Letters B

0.11% !!

https://www.sciencedirect.com/science/article/pii/S037026932030229X
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What’s Next?
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Strategy in a Nutshell
● Using the Full Run 2 dataset, which has 4x as much data

● We reconstruct diphoton objects:
– Single photons objects are reconstructed from ECAL energy deposits

● This needs to be done accurately

– Decide the diphoton vertex using a BDT

– Then we combine them into a diphoton object

● If the diphoton vertex can be determined to within 1cm, the 
uncertainty on the mass is dominated by the uncertainty on 
the energy of the photons

– If we can reduce the uncertainty on the energy scale we can 
reduce the uncertainty on the Higgs mass

M γ γ=√2Eγ
1 Eγ

2
(1−cos(θ12))
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Targeting Systematic Uncertainties
● The H→ ɣɣ mass measurement is becoming a systematics limited analysis

– The combined Run 2 dataset (2016, 2017, and 2018) is 137 fb-1 (13 TeV) 
which is almost 4 times as much data. Reduces Stat. Unc. by 2

● The residual scales and additional smearings are one of the leading sources 
of systematic uncertainty in the measurement 

– Partially because the resolution directly affects the systematic uncertainty 

●

● By having more stable corrections and a better handle on the uncertainty in 
the method of deriving them we can reduce their contribution to the 
systematic uncertainty on the mass measurement. 
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Targeting Systematic Uncertainties
● The H→ ɣɣ mass measurement is becoming a systematics limited 

analysis

● The electron energy scale and resolution corrections are one of the 
leading sources of systematic uncertainty in the measurement 

– Partially because the energy resolution directly affects the systematic 
uncertainty 

●

● By having more stable corrections and a better handle on the 
uncertainty in the method of deriving them we can reduce their 
contribution to the systematic uncertainty on the mass measurement. 
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Residual Scales and Additional Smearings
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E/ɣ Object Calibration
Simulate CMS

and its response
as accurately as 

possible

Generate Z→ee
Events and 

Response from
detector

Train regression
To match detector

Response to 
True energy of e

Apply regression
To data and 
simulation

Correct regression
For residual 

Difference between
Data and simulation

Apply residual
Energy corrections

To electrons

Apply residual
Energy corrections

To photons
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Correcting for Residual Differences in 
Data and MC
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Residual Scales and Additional Smearings
● We target residual difference in data and MC in the single electron energy scale 

through the Z→ee process
● Scale electron energy in data:

–

– Where ΔPei is the scale shift w.r.t MC for electron i

● Smear the electron energy in MC:
–

– Where Δcei is the additional smearing for electron I

● The variables ΔPei and ΔCei are determined by minimizing a global binned NLL of the 
invariant mass for each dielectron category.

● The scales and additional smearings are derived in the following steps
– Bins of Run x η (time) 

– Bins of η x R9 (location)

– Bins of ET (scale)

M ee
scaled

=M ee√(1+ΔPe1)(1+Δ Pe2)

M ee
smeared

=M ee√Gaus(1 ,ΔC e1)∗Gaus(1 ,ΔC e2)



 Neil Schroeder 14
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● Scale electron energy in data:

–

– Where ΔPei is the scale shift w.r.t MC for electron i

● Smear the electron energy in MC:
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– Where Δcei is the additional smearing for electron I

● The variables ΔPei and ΔCei are determined by minimizing a global binned NLL of the 
invariant mass for each dielectron category.

● The scales and additional smearings are derived in the following steps
– Bins of Run x η (time) 

– Bins of η x R9 (location)

– Bins of ET (scale)

M ee
scaled

=M ee√(1+ΔPe1)(1+Δ Pe2)

M ee
smeared

=M ee√Gaus(1,ΔC e1)∗Gaus(1,ΔC e2)

R
9
 = E

3x3
/E

total



 Neil Schroeder 15

Extracting the Scales and Smearings
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SS_PyMin
● Negative Log Likelihood (NLL) minimization framework for 

the residual scales and additional smearings which has the 
following features:
– Simultaneous minimization of scales and smearings across all 

dielectron invariant mass categories, i.e. EB-EB, EB-EE, and EE-
EE

● Binned NLL is evaluated in each category using a template fit of data to 
MC

– Minimizer uses SciPy’s optimize.minimize function and the L-
BFGS-B algorithm. [1][2]

– MC is oversampled the mitigate statistical fluctuations in the NLL 
profile

– Auto-binning of invariant mass histograms using the 
Freedman-Diaconis rule to mitigate stat issues

– Invariant mass histograms are built using Numba to speed up the 
minimization 

https://gitlab.cern.ch/nschroed/cms-ecal-scales-and-smearings
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf
https://dl.acm.org/doi/10.1145/279232.279236
https://link.springer.com/article/10.1007/BF01025868
http://numba.pydata.org/
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UL 2017 Results
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Technical Details
● Data: electrons from Z decays 

– Residual scales are applied here

● MC: DY + Jets
– Additional smearings are applied here

● Transition region of barrel and endcap are excluded 
and |η| < 2.5 

● Et cuts:
– Leading electron: 32 GeV
– Subleading electron: 20 GeV

● 80 < Mee < 100
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Run x |η| Corrections
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UL 2017 Run x |η| Corrections
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Each point here represents ~10,000 events, or roughly 1 Fill
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|η| x R
9 
Corrections

Invariant Mass Data/MC
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UL2017 Data/MC Agreement

● Some clear room for improvement here:
– Scale in EE has lots of room for improvement
– Smearings in EB can improve a bit more as well
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UL2017 Data/MC Agreement

● Some clear room for improvement here:
– Scale in the ET categories has room for improvement

– Smearings here have room for improvement as well
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Stochastic (E
T
) Residual Scales and Additional 

Smearings
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Overview
● The ECAL resolution and response varies with 

electron/photon ET

● Additionally, the electron energy spectrum is 
different from the photon energy spectrum
– Hence the need for a dedicated set of ET dependent 

residual scales is well motivated

● For the additional smearings, we’ve already seen 
that there are trends in the agreement of the 
width of data and MC which depend on ET. 
– Also, the choice of paramaterization for the additional 

smearings is arbitrary, so we have motivation to bin 
the additional smearings in ET
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Run 2 Approach
● For the precision measurement we derive a set of residual 

scales with very high granularity in R9 

–  5 bins in |η|

– 12 bins in R9 

● R9 distributions are different for photons and electrons and the residual scale 
can vary by as much as 2% across R9 

– 10 bins in ET

● ET scale for electrons from Z bosons is different than the ET scale of photons 
from H bosons

● After applying these residual scales we bin our constant term 
additional smearing as a function of ET

– Now smearings will be binned in 3 variables:
● |η|: [(0, 1), (1, 1.4442), (1.566, 2.0), (2.0, 2.5)]
● R9: [(0, 0.96), (0.96, ∞)]
● ET: [(20, 39), (39, 50), (50, 65), (65, 14000)]
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Results for UL 2017
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UL 2017 Data/MC Agreement

● Some clear improvements here:
– Scale in EE has improve a lot, especially in the core of the distribution
– Smearings in EB have flattened out and agreement is excellent 
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UL 2017 Data/MC Agreement

● Some clear room for improvement here:
– Scale in the ET categories has improved greatly, especially in our “target” category

– Smearings here have also improved greatly
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Scales/Smearings versus P
T
(Z)
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Approach
● We are extracting the width of data 

and MC as obtained from the fit in 
bins of Pt(Z)
– Not the same as the electron energy but 

indicative of any non-closure with energy 
scale.

● The width of data and MC are 
compared in the following bins of 
Pt(Z):
– [0, 20, 40, 60, 80, 100, 200, 400, 14000]

● We produce these width comparisons 
for EB-EB, and EE-EE plots
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Barrel-Barrel, 0 < Pt(Z) < 20

DATA MC

The Breit-Wigner Conv. Crystal Ball fit clearly matches the 
width and the peak of the distribution very well
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UL 2017 Data/MC Agreement

● Previously, uncertainty on the ET dependent smearings was 100% of the smearing. 

● With our method we can conservatively assign the non-closure here as the uncertainty on the ET 
dependent smearings, which are less than ~5% at PT(Z) < 100 GeV, and less than 20% for all 
PT(Z) > 100 GeV.
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UL 2017 Data/MC Agreement

● Non-closure here is better than 0.05% for PT(Z) < 100 GeV in both the barrel and the endcap.

● At PT(Z) > 100 GeV the non-closure is better than 0.2% in the EB, and better than ~0.4% in 
the EE
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What do we expect?
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Expected Systematic Uncertainties
● Already the non-closure we’re seeing in UL 2017 

data indicates we’ll be able to reduce these 
uncertainties substantially.

● With these reduced uncertainties we may be 
able to reach an uncertainty of ~150 MeV or 
better
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Summary
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Summary
● Precision Higgs physics is doing well at CMS
● We’re targeting systematic uncertainties on the mass of 

the Higgs boson as the areas we can most improve the 
precision
– Specifically the scales and smearings are one are where we 

expect to do much better than we did in the previous analysis

● The scales and smearings for UL 2017 datasets were 
shown today, and they look great
– Agreement of data and MC are much better in UL 2017 than 

was achieved in Legacy 16 (last mass measurement)

● We’re currently in good standing with our estimate of the 
systematic uncertainties to measure the mass of the 
Higgs in the diphoton channel with a precision of ~150 
MeV, an improvement over the earlier 260 MeV
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Backup
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Higgs Production
● a) gluon gluon Fusion 

(ggH) 89%

● b) Vector Boson 

Fusion (VBF) 5%

● c) Higgstrahlung 4%

● d) ttH 1%
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H→ɣɣ
● The only way it can couple to two photons is through 

some interesting loop or triangle diagrams.
– This process happens to 0.23 % of produced Higgs 

bosons

● This channel has very high precision.
– Photon energy resolution of the CMS ECAL is 1-2%
– The mass resolution is ~0.11% and shrinking
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Extending Smearings to E
T

● The parameterization chosen, from Run 1, for the additional smearing 
was :

● A co-ordinate transformation is performed from the (ΔS, ΔC) plane into 
polar co-ordinates (ρ,φ) to decouple the correlation in the two terms
– ∆C = ρ · sin φ

– ∆S = ρ · < ET > · cos φ , where < ET > is the average ET in the 
category where the smearing is being derived.

● This requires the assumption that ∆σ = ∆σ| ∆S=0 = ∆σ| ∆C=0  i.e the 
additional smearing is the same whether it is derived as a pure 
constant term OR a pure stochastic term. [1]

● The smearing application framework is based on  ρ, φ and the there 
are nuisances built into the signal model for both terms.

Δσ=
Δ S

√(ET )
⊕ΔC The particular parameterization is arbitrary.

[1] Thesis: Shervin Nourbakhsh

http://cds.cern.ch/record/1969408
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Comparison to Legacy 16
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Legacy 2016 Data/MC Agreement

● Some clear differences here:
– Scale in barrel in UL17 is much better than in Legacy 16
– Smearings in endcap are much better in both barrel and endcap
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UL2017 Data/MC Agreement

● Smearings are drastically improved from UL 16 and 
agreement in core and tails has improved slightly
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