Dark Stars EXPLORE - 2021

Alexander Brisebois¹ Muhammad Azeem² Marie Cassing³

¹University of Toronto ²York University ³Goethe University

Mentor: Jürgen Schaffner-Bielich Junior Mentor: Alejandro Cruz-Osorio

EXPLORE Workshop, 2021

- Introduction
- 2 Hydrostatic Equilibrium
- Constant Density Solutions
- Rescaling TOV for General Case
- Non-constant Density : Fermi Gas
- 6 Conclusions
- Extra slides

Motivation

- Existence of unexplored matter: dark matter
- Possibility for stars consisting of dark matter
- Explore properties of combined compact stars, dark stars

Dark stars models

White Dwarf

White Dwarfs are compact stars, comprised of electrons and nucleons, supported by electron degeneracy pressure.

Mass: 0.5-1 M_☉

 Typical Radius: 10000 km Dominant Particles: Electrons, Nucleons

Figure: Comparison of the size of Sirius B and the Earth (Credit: ESA)

Neutron Star

Neutron Stars are compact stars comprised dominantly of neutrons, which are supported by the interaction pressure of the nucleons.

 \bullet Mass : 1-2 M $_{\odot}$

Typical Radius : 10 km

Dominant Particles: Neutrons

Figure: Neutron Star Structure (Credit: Dany Page)

Quark Star

Quark stars are a type of theoretical compact objects, more compact than a neutron star, made up of quark matter.

• Mass : $1-2 M_{\odot}$

IVI⊙

• Typical Radius: 10 km

Dominant Particles: Up quark, Down quark, Strange quark

Figure: collision at the LHC producing quark matter (Alice collaboration)

Fermion Star

Fermion stars are a class of compact stars that are made of mainly fermions.

- Includes the aforementioned White Dwarfs, Neutron Stars, and Quark Stars
- This can be generalized to model an arbitrary fermion by modelling the equation of state as a free or interacting Fermi gas
- Dominant Particles: Fermions

Dark Matter Candidates

Hydrostatic Equilibrium

By definition hydrostatic equilibrium is obtained when the pressures of fluid and external forces such as gravity balance each other $dF_P + dF_\varphi = 0$

Two gravity regime cases where we can discuss hydrostatic equilibrium:

- Non-relativistic Case (Newtonian)
- Relativistic Case

Non-relativistic

The gravitational force on a mass element dm is

$$dF = -\Phi dm$$
,

where $\Phi = -G\frac{M}{r}$ is the gravitational potential, and G is the gravitational constant.

Assuming a spherically symmetric object we arrive at an equation for hydrostatic equilibrium with $\rho(r)$ mass-density as function of r:

$$\frac{dP}{dr} = -\frac{GM(r)}{r^2}\rho(r). \tag{1}$$

Similarly from the spherical geometry assumption we get an equation for mass:

$$\frac{dM}{dr} = 4\pi r^2 \rho(r). \tag{2}$$

Relativistic

For the relativistic case we use General Relativity:

- Solve Einstein's field equations
- Schwarzschild metric for stars
- Energy momentum tensor of ideal fluid :

$$T_{\mu\nu} = \rho g_{\mu\nu} + (P + \rho) U_{\mu} U_{\nu},$$

with pressure P , restmass density ho , velocity of fluid U_{μ}

Relativistic II

Setting the condition of equilibrium, we get the structure of a compact star:

$$\frac{dP}{dr} = -\frac{G M(r)\rho(r)}{r^2} \left(1 + \frac{P}{\rho(r)c^2}\right) \frac{\left(1 + \frac{4\pi r^3 P}{M(r)c^2}\right)}{\left(1 - \frac{2GM(r)}{rc^2}\right)}, \quad (3)$$

$$\frac{dM}{dr} = 4\pi r^2 \rho(r), \tag{4}$$

which are the Tolman-Oppenheimer-Volkoff (TOV) equations.

- ullet Throughout the presentation we will be using natural units by setting $\hbar=c=1$
- G can be expressed in terms of Planck Mass M_p , $G = M_p^{-2}$.

Boundary Conditions

Initial and boundary conditions for solving differential equation for relativistic and non-relativistic case:

$$P(r = 0) = P_o$$
 $P(r = R) = 0$ $M(r = 0) = 0$ $M(r = R) = M$

• The central pressure P_0 is calculated from the Equation of State (EOS) (if known) Central energy density $\rho(r=0)=\rho_0$ is given as the initial condition.

For example: EOS for ideal gas is PV = nRT

Model I: Constant Density Solution

Consider star with density $\rho(r) = \rho^*$ for all $r \leq R$ then there is an analytical solution for both the non-relativistic and relativistic cases.

The density profile reads as follows:

$$\rho(r) = \begin{cases} \rho^* & 0 \le r \le R, \\ 0 & r > R. \end{cases}$$

Model Ia: Non-relativistic Case with Constant Density

Solving equation (1) and (2) with constant density $\rho(r) = \rho^*$ for all $r \leq R$

$$rac{dP}{dr}=rac{GM(r)}{r^2}
ho^* \ rac{dM}{dr}=4\pi r^2
ho^* o M(r)=rac{4}{3}\pi r^3
ho^* \
brace$$
 Non-relativistic

We obtain the analytical solution:

$$P(r) = P(0)\left(1 - \frac{r^2}{R^2}\right)$$
 (5)

where,

$$P(0) = \frac{2\pi}{3} GR^2 \rho^{*2}$$

Model Ib: Relativistic Case with Constant Density

In the relativistic case we have the TOV-equation for constant density $\rho(r) = \rho^*$ for all $r \leq R$

$$\frac{dP}{dr} = -G\frac{M(r)}{r^2}\rho^* \left(1 + \frac{P}{\rho^*}\right) \frac{\left(1 + \frac{4\pi r^3 P}{M(r)}\right)}{\left(1 - \frac{2GM(r)}{r}\right)}$$

$$\frac{dM}{dr} = 4\pi r^2 \rho^* \to M(r) = \frac{4}{3}\pi r^3 \rho^*$$
Relativistic

We obtain analytical solution:

$$P(r) = \rho^* \left(\frac{R\sqrt{R - 2GM} - \sqrt{R^3 - 2GMr^2}}{\sqrt{R^3 - 2GMr^2} - 3R\sqrt{R - 2GM}} \right).$$
 (6)

Model I: Constant Density Plot

Figure: Pressure vs Radius & Mass vs Radius diagrams

Buchdahl's Limit

Notice in the solution of TOV (6) as $R \to \frac{9}{4} GM$ solution diverges we call this compactness limit or Buchdahl's limit.

$$\frac{R}{M} > \frac{9G}{4}$$
 OR $C = \frac{M}{R} < \frac{4}{9G}$.

Model II: Two-fluid constant density solution

We can consider a fluid density profile for a star containing two incompressible fluids. The density profile reads as follows:

$$\rho(r) = \begin{cases} \rho_0 & 0 \le r \le r_c, \\ \rho_1 & r_c < r \le R, \\ 0 & r > R. \end{cases}$$

Model II: Two-fluid constant density solution

Pressure and Mass vs Radius for constant densities and varying r_c :

5.5 5.0 2 step density profile 4.5 r'.=9.0 r'.=8.0 r'.=6.5 3.0 r'_=5.0 2.5 r'_=3.0 2.0 1.5 1.0 0.5 0.0

Figure: Pressure vs Radius

Figure: Mass vs Radius

Model II: Two-fluid constant density solution

Compactness for 2 Step Profile when varying central pressure P_o' , ratio of densities ρ_o'/ρ_1' and core radius r_c

→ All cases stay under the Buchdahl limit

Scaling of the TOV equation for General Case I

Consider dimensionless quantities:

$$P = \epsilon_0 \cdot P'$$
 and $\rho = \epsilon_0 \cdot \rho'$, (7)

and rescale radius r and mass M such that

$$r = b \cdot r'$$
 and $M = a \cdot M'$, (8)

With conditions we have:

$$a = \frac{M_p^3}{\sqrt{\epsilon_0}}$$
 and $b = \frac{M_p}{\sqrt{\epsilon_0}}$ (9)

Dimensionless TOV

Then dimensionless TOV:

$$\frac{dP'}{dr'} = -\frac{M'(r')}{r'^{2}}\rho'(r')\left(1 + \frac{P'}{\rho(r')}\right)\frac{\left(1 + \frac{4\pi r'^{3}P'}{M'(r')}\right)}{\left(1 - \frac{2M'(r')}{r'}\right)},\tag{10}$$

$$\frac{dM'(r')}{dr'} = 4\pi r'^{2} \rho'(r'). \tag{11}$$

Model III: Fermi gas Equation of state

An ideal Fermi gas is a gas ensemble of many fermions

- Fermions are particles such as electrons, protons, and neutrons
- Particles with half-integer spin

Why Fermionic matter?

Candidates for dark matter particles such as:

- Super-symmetric particles
- Neutralino
- Gravitino
- Axino

EOS: Fermi gas with interactions

The equation of state for an interacting Fermi gas $P(\rho)$ can be calculated via explicit expressions for the energy density ρ and pressure P from thermodynamics:

$$\rho' \equiv \frac{\rho}{m_f^4} = \rho_{ff} + \rho_{int} \tag{12}$$

$$P' \equiv \frac{P}{m_f^4} = P_{ff} + P_{int} \tag{13}$$

with P_{int} and $\rho_{int} \propto y$

where y is interaction strength and m_f is mass of fermion

- ullet We make EOS dimensionless by dividing by m_f^4 so $\epsilon_o=m_f^4$
- Note: when y = 0 we get the EOS for Free Fermi gas (Fermi gas with no interactions)

Model III: Fermi gas Equation of state

Figure below depicts the resulting dimensionless pressure P versus the dimensionless energy density ρ in a logarithmic of P' and ρ' for different interaction strengths (y) ranging from 0 to 10^3

Model IIIa: Free Fermi gas

For interaction strength y=0 we have a Free Fermi gas (non-interacting fermions):

Mass vs Radius plot for a Free Fermi Gas :

Figure: Mass vs Radius

Model IIIb: Fermi gas with Interactions

Mass vs Radius for an interacting Fermi gas (varying interaction strength, y): On double logarithmic scale (y = 1 to y = 1000):

 \longrightarrow Maximal mass and Minimum Radius increases with interaction strength

Model IV: Neutralino dark matter

Dark matter star : y = 10Neutralino : m = 100 GeV

(Narain et. al. 2006 [astro-ph/0605724])

→ For Neutralinos the radius of the star is under 1 km

Model IV: Neutralino dark matter

Compactness for the dark matter:

Figure: Compactness vs Radius

Model V: Axino dark matter and fermi solutions

Combined dark matter fermi star:

Core: Free fermi gas of (dark) neutrons,

Shell: Selfinteracting axino dark matter y = 10

 $\begin{array}{c} 10^2 \\ 10^0 \\ \hline \\ 10^4 \\ \hline \\ 10^4 \\ 10^6 \\ 10^1 \\ \hline \end{array} \begin{array}{c} \text{Combined EoS at r_c=5} \\ \text{with DM shell y=$10, m'=10}^4 m_N : \\ p' \text{ at R_{max}} \\ \hline \\ 10^6 \\ 10^6 \\ \hline \end{array}$

Figure: EoS

Figure: Pressure vs Radius

Model V: Axino dark matter and fermi solutions

Mass vs Radius and compactness plots for a combined dark matter fermi star:

→ With dark matter we obtain different shapes of M-R-curve

Model VI: Quark matter and fermi solutions

Combined quark fermi star:

Core: quark matter

MIT-BAG-model : $P = (\epsilon - \epsilon_{vac})/3$

Shell: interacting fermi gas y = 10

2.0
1.9
1.8
1.7
1.6
1.5
1.5
1.5
1.1
1.0
5 6 7 8 9 10 11 12 13 14 15 16

Figure: Pressure vs Radius

Figure: Mass vs Radius

Model VI: Quark matter and Fermi solutions

Compactness plot for a combined quark fermi star:

Figure: Compactness vs Radius

Model VII: Mixed dark matter and fermi solutions

Mixed dark matter fermi star:

- \rightarrow Interacting fermi gas of neutrons y = 10
- \rightarrow Axino dark matter

→ A new star configuration

Model VII: Mixed dark matter fermi solutions

Compactness for a mixed dark matter fermi star:

Results of combined stars

Summary

- find various solutions for combined star configurations
- solutions are stable, even Dark Matter solutions
- produce different mass-radius solutions, different shapes
- in all cases the Buchdahl limit is fullfilled

Outlook: exploration not yet finished

- \rightarrow Explore parameter range
- \rightarrow Classify dark stars
- \rightarrow Realization with microphysics

Artistic logo

Question to audience:

What could be beyond the Buchdahl limit?

Question to audience:

What could be beyond the Buchdahl limit?

Answer : Objects with higher compactness : Black holes !

NASA/CXC/M.Weiss

Thank you for your attention!

Appendix

Appendix:

• Derivation of analytical expressions

Non-relativistic I

The gravitational force on a mass element dm is

$$d\vec{F} = -\Phi dm, \tag{14}$$

where Φ is the gravitational potential given by:

$$\Phi = -G\frac{M}{r},\tag{15}$$

where G is the gravitational constant.

Non-relativistic II

We can write an expression for the force density and since the pressure is the force over the area we get:

$$\frac{d\vec{F}}{dV} = -\rho \vec{\nabla} dr \implies \vec{\nabla} P = -\rho(r) \vec{\nabla} \Phi(r), \tag{16}$$

where ρ is the mass-density of the object.

For a spherically symmetric object we can rewrite eq. (11) as

$$\frac{dP}{dr} = -\rho(r)\frac{d\Phi}{dr},\tag{17}$$

Thus from the derivative of the gravitational potential we obtain the equation for hydrostatic equilibrium:

$$\frac{dP}{dr} = -\frac{GM(r)}{r^2}\rho(r). \tag{18}$$

Mass differential Equation

Assuming spherical geometry, the equation of mass follows from eq. (??)

$$\nabla \Phi = 4\pi r^2 \rho(r). \tag{19}$$

From above we get:

$$\frac{dM(r)}{dr} = 4\pi r^2 \rho(r). \tag{20}$$

Relativistic I

For the relativistic case we use General Relativity:

- Solve Einstein's field equations
- Schwarzschild metric for stars
- Energy momentum tensor of ideal fluid :

$$T_{\mu\nu} = \rho g_{\mu\nu} + (P + \rho) U_{\mu} U_{\nu},$$
 (21)

with pressure P , restmass density ho , velocity of fluid U_{μ}

Relativistic II

Setting the condition of equilibrium, $U_{\mu}=(1,0)$ we get for a compact star:

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2} \left(1 + \frac{P}{\rho(r)}\right) \frac{\left(1 + \frac{4\pi r^3 P}{M(r)}\right)}{\left(1 - \frac{2GM(r)}{r}\right)}, \quad (22)$$

$$\frac{dM(r)}{dr} = 4\pi r^2 \rho(r), \tag{23}$$

which are the Tolman-Oppenheimer-Volkoff (TOV) equations.

ullet Throughout the presentation we will be using natural units by setting $\hbar=c=1$

Boundary Conditions

- -> Initial and boundary conditions for solving TOV :
 - The radius of the star, R, is found by using the condition that the pressure vanishes at the surface of the star. (P(R) = 0)
 - The mass M(0) must be zero at r=0 and M(R) gives the total mass of the star at r=R
 - The central pressure P_0 is calculated from the equation of state (EOS) (if known) once the central energy density $\rho(0) = \rho_0$ is given as the initial condition.

Model Ia: Non-relativistic Case with Constant Density

Solving equation (1) and (2) with constant density $\rho(r) = \rho^*$ for $r \leq R$

$$\frac{dP}{dr} = \frac{GM(r)}{r^2} \rho^*,
\frac{dM(r)}{dr} = 4\pi r^2 \rho^*.$$
Non-relativistic (24)

We obtain the analytical solution:

$$P(r) = P(0) \left(1 - \frac{r^2}{R^2} \right),$$
 (25)

where,

$$P(0) = \frac{2\pi}{3} GR^2 \rho^{*2}.$$

Model Ib: Relativistic Case with Constant Density

In the relativistic case we have the TOV-equation for constant density $\rho(r) = \rho^*$ for $r \leq R$

Relativistic:
$$\left\{ \begin{array}{l} \frac{dP}{dr} = -G\frac{M(r)}{r^2}\rho^* \left(1 + \frac{P}{\rho^*}\right) \frac{\left(1 + \frac{4\pi r^3 P}{M(r)}\right)}{\left(1 - \frac{2GM(r)}{r}\right)}, \\ \frac{dM(r)}{dr} = 4\pi r^2 \rho^*. \end{array} \right\}$$
 (26)

We obtain analytical solution:

$$P(r) = \rho^* \left(\frac{R\sqrt{R - 2GM} - \sqrt{R^3 - 2GMr^2}}{\sqrt{R^3 - 2GMr^2} - 3R\sqrt{R - 2GM}} \right).$$
 (27)

Scaling of the TOV equation for General Case I

Consider dimensionless quantities:

$$P = \epsilon_0 P^{\prime} \text{ and } \rho = \epsilon_0 \rho^{\prime},$$
 (28)

and rescale radius r and mass M such that

$$r = br'$$
 and $M = aM'$, (29)

• Note: G can be expressed in terms of Planck Mass, M_p : $G = M_p^{-2}$.

Scaling of the TOV equation for General Case

Rescaled TOV equation in terms of dimensionsless quantities:

$$\frac{\epsilon_0 dP'}{adr'} = -G \frac{bM' \epsilon_0 \rho'}{a^2 r'^2} \left(1 + \frac{\epsilon_0 P'}{\epsilon_0 \rho'} \right) \frac{\left(1 + \frac{4\pi a^3 r'^3 \epsilon_0 P'}{bM'} \right)}{\left(1 - \frac{2GbM'}{ar'} \right)}, \quad (30)$$

With conditions:

$$a = b^3 \epsilon_0$$
 and $b = \frac{a}{M_p^2}$, (31)

We have:

$$a = \frac{M_p^3}{\sqrt{\epsilon_0}}$$
 and $b = \frac{M_p}{\sqrt{\epsilon_0}}$. (32)

Dimensionless TOV

Then dimensionless TOV:

$$\frac{dP'}{dr'} = -\frac{M'(r')}{r'^2} \rho'(r') \left(1 + \frac{P'}{\rho(r')}\right) \frac{\left(1 + \frac{4\pi r'^3 P'}{M'(r')}\right)}{\left(1 - \frac{2M'(r')}{r'}\right)},\tag{33}$$

$$\frac{dM'(r')}{dr'} = 4\pi r'^{2} \rho'(r'). \tag{34}$$

Why dimensionless?