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Motivation

Existence of unexplored matter: dark matter
Possibility for stars consisting of dark matter
Explore properties of combined compact stars, dark stars
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Dark stars models
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White Dwarf

White Dwarfs are compact stars, comprised of electrons and
nucleons, supported by electron degeneracy pressure.

Mass : 0.5-1 M�
Typical Radius : 10000 km
Dominant Particles: Electrons, Nucleons

Figure: Comparison of the size of Sirius B and the Earth (Credit: ESA)
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Neutron Star

Neutron Stars are compact stars com-
prised dominantly of neutrons, which
are supported by the interaction pres-
sure of the nucleons.

Mass : 1-2 M�

Typical Radius : 10 km
Dominant Particles: Neutrons

Figure: Neutron Star
Structure (Credit: Dany
Page)
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Quark Star

Quark stars are a type of theoretical compact objects, more
compact than a neutron star, made up of quark matter.

Mass : 1-2 M�
Typical Radius : 10 km
Dominant Particles: Up quark, Down quark, Strange quark

Figure: collision at the LHC producing quark matter (Alice collaboration)
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Fermion Star

Fermion stars are a class of compact stars that are made of mainly
fermions.

Includes the aforementioned White Dwarfs, Neutron Stars,
and Quark Stars
This can be generalized to model an arbitrary fermion by
modelling the equation of state as a free or interacting Fermi
gas
Dominant Particles: Fermions
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Dark Matter Candidates
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Hydrostatic Equilibrium

By definition hydrostatic equilibrium is obtained
when the pressures of fluid and external
forces such as gravity balance each other
dFP + dFg = 0

Two gravity regime cases where we can discuss
hydrostatic equilibrium:

Non-relativistic Case (Newtonian)
Relativistic Case
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Non-relativistic
The gravitational force on a mass element dm is

dF = −Φdm,

where Φ = −G M
r is the gravitational potential, and G is the

gravitational constant.
Assuming a spherically symmetric object we arrive at an equation
for hydrostatic equilibrium with ρ(r) mass-density as function of r :

dP
dr = −GM(r)

r2 ρ(r). (1)

Similarly from the spherical geometry assumption we get an
equation for mass:

dM
dr = 4πr2ρ(r). (2)
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Relativistic

For the relativistic case we use General Relativity:
Solve Einstein’s field equations
Schwarzschild metric for stars
Energy momentum tensor of ideal fluid :

Tµν = ρgµν + (P + ρ)UµUν ,

with pressure P , restmass density ρ, velocity of fluid Uµ
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Relativistic II

Setting the condition of equilibrium, we get the structure of a
compact star:

dP
dr = −G M(r)ρ(r)

r2

(
1 + P

ρ(r)c2

) (1 + 4πr3P
M(r)c2

)
(
1− 2GM(r)

rc2

) , (3)

dM
dr = 4πr2ρ(r), (4)

which are the Tolman-Oppenheimer-Volkoff (TOV) equations.
Throughout the presentation we will be using natural units by
setting ~ = c = 1
G can be expressed in terms of Planck Mass Mp, G = M−2

p .
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Boundary Conditions

Initial and boundary conditions for solving differential equation for
relativistic and non-relativistic case:

P(r = 0) = Po P(r = R) = 0

M(r = 0) = 0 M(r = R) = M

The central pressure P0 is calculated from the Equation of
State (EOS) (if known)
Central energy density ρ(r = 0) = ρ0 is given as the initial
condition.

For example: EOS for ideal gas is PV = nRT

Alexander Brisebois, Muhammad Azeem, Marie Cassing EXPLORE
Dark Stars



Model I: Constant Density Solution

Consider star with density ρ(r) = ρ∗ for all r ≤ R then there is an
analytical solution for both the non-relativistic and relativistic
cases.
The density profile reads as follows:

ρ(r) =
{
ρ∗ 0 ≤ r ≤ R,
0 r > R.
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Model Ia: Non-relativistic Case with Constant Density

Solving equation (1) and (2) with constant density
ρ(r) = ρ∗ for all r ≤ R

dP
dr = GM(r)

r2 ρ∗

dM
dr = 4πr2ρ∗ → M(r) = 4

3πr3ρ∗

 Non-relativistic

We obtain the analytical solution:

P(r) = P(0)
(
1− r2

R2

)
(5)

where,
P(0) = 2π

3 GR2ρ∗2
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Model Ib: Relativistic Case with Constant Density

In the relativistic case we have the TOV-equation for constant
density ρ(r) = ρ∗ for all r ≤ R

dP
dr = −G M(r)

r2 ρ∗
(
1 + P

ρ∗

) (
1 + 4πr3P

M(r)

)
(
1− 2GM(r)

r

)
dM
dr = 4πr2ρ∗ → M(r) = 4

3πr3ρ∗


Relativistic

We obtain analytical solution:

P(r) = ρ∗
(

R
√

R − 2GM −
√

R3 − 2GMr2
√

R3 − 2GMr2 − 3R
√

R − 2GM

)
. (6)
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Model I: Constant Density Plot

Figure: Pressure vs Radius & Mass vs Radius diagrams
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Buchdahl’s Limit
Notice in the solution of TOV (6) as R → 9

4GM solution diverges
we call this compactness limit or Buchdahl’s limit.

R
M >

9G
4 OR C = M

R <
4
9G .
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Model II: Two-fluid constant density solution

We can consider a fluid density profile for a star containing two
incompressible fluids. The density profile reads as follows:

ρ(r) =


ρ0 0 ≤ r ≤ rc ,
ρ1 rc < r ≤ R,
0 r > R.
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Model II: Two-fluid constant density solution

Pressure and Mass vs Radius for constant densities and varying rc :

0 2 4 6 8 10 12 14
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Pressure P'
2 step density profile

 r'c=9.0

 r'c=8.0

 r'c=6.5

 r'c=5.0

 r'c=3.0

 

P'
(r

')

r'

Figure: Pressure vs Radius
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Figure: Mass vs Radius
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Model II: Two-fluid constant density solution
Compactness for 2 Step Profile when varying central pressure P ′o,
ratio of densities ρ′o/ρ

′
1 and core radius rc
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−→ All cases stay under the Buchdahl limit
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Scaling of the TOV equation for General Case I

Consider dimensionless quantities:

P = ε0 · P
′ and ρ = ε0 · ρ

′
, (7)

and rescale radius r and mass M such that

r = b · r ′ and M = a ·M ′
, (8)

With conditions we have:

a =
M3

p√
ε0

and b = Mp√
ε0

(9)
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Dimensionless TOV

Then dimensionless TOV:

dP ′

dr ′ = −M ′(r ′)
r ′2 ρ

′(r ′)
(
1 + P ′

ρ(r ′)

) (1 + 4πr ′3P′

M′ (r ′ )

)
(
1− 2M′ (r ′ )

r ′
) , (10)

dM ′(r ′)
dr ′ = 4πr ′2ρ′(r ′). (11)
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Model III: Fermi gas Equation of state

An ideal Fermi gas is a gas ensemble of many fermions
Fermions are particles such as electrons, protons, and neutrons
Particles with half-integer spin

Why Fermionic matter ?
Candidates for dark matter particles such as:

Super-symmetric particles
Neutralino
Gravitino
Axino
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EOS: Fermi gas with interactions

The equation of state for an interacting Fermi gas P(ρ) can be
calculated via explicit expressions for the energy density ρ and
pressure P from thermodynamics:

ρ
′ ≡ ρ

m4
f

= ρff + ρint (12)

P ′ ≡ P
m4

f
= Pff + Pint (13)

with Pint and ρint ∝ y
where y is interaction strength and mf is mass of fermion

We make EOS dimensionless by dividing by m4
f so εo = m4

f
Note: when y = 0 we get the EOS for Free Fermi gas (Fermi
gas with no interactions)
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Model III: Fermi gas Equation of state
Figure below depicts the resulting dimensionless pressure P versus
the dimensionless energy density ρ in a logarithmic of P ′ and ρ′ for
different interaction strengths (y) ranging from 0 to 103
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Model IIIa: Free Fermi gas

For interaction strength y = 0 we have a Free Fermi gas
(non-interacting fermions):
Mass vs Radius plot for a Free Fermi Gas :
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Figure: Mass vs Radius
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Model IIIb: Fermi gas with Interactions

Mass vs Radius for an interacting Fermi gas
(varying interaction strength, y):
On double logarithmic scale (y = 1 to y = 1000) :
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−→ Maximal mass and
Minimum Radius increases with interaction strength
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Model IV: Neutralino dark matter

Dark matter star : y = 10
Neutralino : m = 100GeV
( Narain et. al. 2006 [astro-ph/0605724] )
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−→ For Neutralinos the radius of the star is under 1 km
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Model IV: Neutralino dark matter

Compactness for the dark matter:
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Figure: Compactness vs Radius
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Model V: Axino dark matter and fermi solutions

Combined dark matter fermi star:
Core: Free fermi gas of (dark) neutrons,
Shell: Selfinteracting axino dark matter y = 10
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Model V: Axino dark matter and fermi solutions

Mass vs Radius and compactness plots for a combined dark matter
fermi star:
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−→ With dark matter we obtain different shapes of M-R-curve
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Model VI: Quark matter and fermi solutions

Combined quark fermi star:
Core: quark matter
MIT-BAG-model : P = (ε− εvac)/3
Shell: interacting fermi gas y = 10
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Model VI: Quark matter and Fermi solutions
Compactness plot for a combined quark fermi star:
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Model VII: Mixed dark matter and fermi solutions

Mixed dark matter fermi star:
→ Interacting fermi gas of neutrons y = 10
→ Axino dark matter
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−→ A new star configuration
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Model VII: Mixed dark matter fermi solutions

Compactness for a mixed dark matter fermi star:
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Results of combined stars
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Summary

find various solutions for combined star
configurations
solutions are stable, even Dark Matter
solutions
produce different mass-radius solutions,
different shapes
in all cases the Buchdahl limit is fullfilled

Outlook: exploration not yet finished
→ Explore parameter range
→ Classify dark stars
→ Realization with microphysics

Artistic logo
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Question to audience :

What could be beyond the Buchdahl limit ?
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Question to audience :
What could be beyond the Buchdahl limit ?

Answer :
Objects with higher compactness : Black holes !

NASA/CXC/M.Weiss
Alexander Brisebois, Muhammad Azeem, Marie Cassing EXPLORE
Dark Stars



Thank you for your attention!
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Appendix

Appendix:
Derivation of analytical expressions
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Non-relativistic I

The gravitational force on a mass element dm is

d~F = −Φdm, (14)

where Φ is the gravitational potential given by:

Φ = −G M
r , (15)

where G is the gravitational constant.
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Non-relativistic II
We can write an expression for the force density and since the
pressure is the force over the area we get:

d~F
dV = −ρ~∇dr =⇒ ~∇P = −ρ(r)~∇Φ(r), (16)

where ρ is the mass-density of the object.
For a spherically symmetric object we can rewrite eq. (11) as

dP
dr = −ρ(r)dΦ

dr , (17)

Thus from the derivative of the gravitational potential we obtain
the equation for hydrostatic equilibrium:

dP
dr = −GM(r)

r2 ρ(r). (18)
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Mass differential Equation

Assuming spherical geometry, the equation of mass follows from
eq. (??)

∇Φ = 4πr2ρ(r). (19)

From above we get :

dM(r)
dr = 4πr2ρ(r). (20)
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Relativistic I

For the relativistic case we use General Relativity:
Solve Einstein’s field equations
Schwarzschild metric for stars
Energy momentum tensor of ideal fluid :

Tµν = ρgµν + (P + ρ)UµUν , (21)

with pressure P , restmass density ρ, velocity of fluid Uµ
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Relativistic II

Setting the condition of equilibrium, Uµ = (1, 0) we get for a
compact star:

dP
dr = −G M(r)ρ(r)

r2

(
1 + P

ρ(r)

) (
1 + 4πr3P

M(r)

)
(
1− 2GM(r)

r

) , (22)

dM(r)
dr = 4πr2ρ(r), (23)

which are the Tolman-Oppenheimer-Volkoff (TOV) equations.
Throughout the presentation we will be using natural units by
setting ~ = c = 1
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Boundary Conditions

-> Initial and boundary conditions for solving TOV :
The radius of the star, R, is found by using the condition that
the pressure vanishes at the surface of the star. (P(R) = 0)
The mass M(0) must be zero at r = 0 and M(R) gives the
total mass of the star at r = R
The central pressure P0 is calculated from the equation of
state (EOS) (if known) once the central energy density
ρ(0) = ρ0 is given as the initial condition.
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Model Ia: Non-relativistic Case with Constant Density

Solving equation (1) and (2) with constant density
ρ(r) = ρ∗ for r ≤ R

dP
dr = GM(r)

r2 ρ∗,

dM(r)
dr = 4πr2ρ∗.

 Non-relativistic (24)

We obtain the analytical solution:

P(r) = P(0)
(
1− r2

R2

)
, (25)

where,
P(0) = 2π

3 GR2ρ∗2.
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Model Ib: Relativistic Case with Constant Density

In the relativistic case we have the TOV-equation for constant
density ρ(r) = ρ∗ for r ≤ R

Relativistic:


dP
dr = −G M(r)

r2 ρ∗
(
1 + P

ρ∗

) (1+ 4πr3P
M(r)

)
(

1− 2GM(r)
r

) ,
dM(r)
dr = 4πr2ρ∗.

 (26)

We obtain analytical solution:

P(r) = ρ∗
(

R
√

R − 2GM −
√

R3 − 2GMr2
√

R3 − 2GMr2 − 3R
√

R − 2GM

)
. (27)
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Scaling of the TOV equation for General Case I

Consider dimensionless quantities:

P = ε0P ′ and ρ = ε0ρ
′
, (28)

and rescale radius r and mass M such that

r = br ′ and M = aM ′
, (29)

Note: G can be expressed in terms of Planck Mass, Mp:
G = M−2

p .
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Scaling of the TOV equation for General Case

Rescaled TOV equation in terms of dimensionsless quantities:

ε0dP ′

adr ′ = −G bM ′
ε0ρ

′

a2r ′2

(
1 + ε0P ′

ε0ρ
′

) (1 + 4πa3r ′3εoP
′

bM′

)
(
1− 2GbM′

ar ′
) , (30)

With conditions:

a = b3ε0 and b = a
M2

p
, (31)

We have:
a =

M3
p√
ε0

and b = Mp√
ε0
. (32)
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Dimensionless TOV

Then dimensionless TOV:

dP ′

dr ′ = −M ′(r ′)
r ′2 ρ

′(r ′)
(
1 + P ′

ρ(r ′)

) (1 + 4πr ′3P′

M′ (r ′ )

)
(
1− 2M′ (r ′ )

r ′
) , (33)

dM ′(r ′)
dr ′ = 4πr ′2ρ′(r ′). (34)

Why dimensionless?
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