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ML to identify symmetries and 
integrability of physical systems
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Our purpose in theoretical physics is not to describe the world as we find it,
but to explain - in terms of a few fundamental principles - why the world is 
the way it is. 

Steven Weinberg 

Can ML achieve this? [requiring explainable AI] 

If yes, which NEW physics can we reveal? 
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Which problems?
Theoretical physics problems made for ML: understanding high-dimensional data
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Today: How to extract domain knowledge/biases with ML 
(e.g. what are the symmetries of a system) 

Lots of high-dimensional problems in string theory: 
• Sampling String Vacua with RL and genetic algorithms  

see Gary Shiu’s talk on Thursday for some of our work 
• Numerical CY metrics 
• …

Why high-dimensional data? Large function space of possible solutions



Why functional biases in ML?
ML can overcome curses of dimensionality when using symmetries

• Efficient functional biases can overcome this curse of dimensionality, e.g. 
utilising symmetries of your data 
 

• Such functional biases (e.g. symmetries) are at the heart of all physics models

Deep CNNs

Translation invariance: CNNs Geometric Deep Learning

Bronstein talk at ICLR, 2104.13478
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Finding symmetries and integrable structures of physical systems

and based on (2104.14444,  
2103.07475, 2003.13679),  
in collaboration with:

Marc Syvaeri Dieter Lüst



What to do when we do not have domain knowledge? 
Can we use AI to identify the correct domain knowledge?
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Underlying questions: 

Are we missing mathematical/physical structures?

Can we find such structures with ML and then use them?
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See also: Tegmark et al. (lots of works)



In Chemistry pre 1869?
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In Particle Physics 
pre ~ 60s/70s?
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Which tools do we need to make such  
discoveries with ML in the 2020s?

Finding mathematical structures to 
describe systems more efficiently

Our approach: Symmetries, Dualities, and 
Integrability 
 
Why care for ML systems? Symmetries, 
dualities and integrability are standard 
structures used in physical systems which 
make your life easier (parameter inference, 
predictions from functional bias) 

 good functional bias→

Pattern in Calabi-Yau data

Topological Feature 1

Feature 2

QCDDM Halos

CY-metrics
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Symmetries from embedding layer
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Krippendorf, Syvaeri 2020



How to search for symmetries?
The problem

Krippendorf, Syvaeri 2020

Radial direction

1. How to find invariances? 
f(ϕ) = f(ϕ̃)

2. Which symmetry is behind 
such an invariance? f(x, y)

x y
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How to search for symmetries?
Embedding in deep layer

Krippendorf, Syvaeri 2020

Paris
London

Deep Layer

France
EnglandWord2Vec does it: 

             (England - London = Paris - France)  
 
      [1301.3781, used for re-discovering periodic table 1807.05617,  
        classifying scents of molecules 1910.10685]

We need: group input with the same meaning together

Yes!

Can we search for 
symmetries in this way?
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Feed-forward network

Examples: SO(2), SU(2), 
discrete symmetries (CICY)
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How to determine the symmetry?

1

1

G =

∑
0.00 °1.00
1.00 0.01

∏

p′ = p + ϵaTap

Connected points in input space:

Which symmetry?

Determine generator connecting points in (sub)-space:

Repeat multiple times (covering 
all sub-spaces) and perform PCA 
on generators:

Krippendorf, Syvaeri 2020

Other Examples?

14



Symmetries from data 
(samples of phase space)
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Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)



Simulations and physics bias

• The correct functional expressivity is key (vision: CNNs; geometric deep 
learning). Example for prediction of trajectories: 
 
 
 

16

True Model
Battaglia et al 2016 (1612.00222) 
….

 p
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 ·p
·q

Input Target

Model(Sequence 
of) images

Model 
(CNN)



AI and Physics for Simulations

 p
q

 ·p
·q

Input Target

Model
 p

q
 ·p = − ∂H

∂q
·q = ∂H

∂p

Biased 
Model H

Krippendorf, Syvaeri (ICLR simDL workshop, 2104.14444)

Greydanus et al. 2019 
…

Physics Bias helps for predictions! Auto-Differentiation

Physics Bias: enforce energy conservation
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Can we learn more structures 
from samples of phase space?
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More structures from neural networks?

• If we can train NNs to find the Hamiltonian of a system, can we use it to learn other 
interesting structures?


• Symmetries of the system? E.g. via canonical transformations (cyclic coordinates 
reveal conserved quantities)


• How does this work? 2 key steps:

1. Formulate your physics search problem as an optimisation problem.

2. Make sure it’s learnable for your architecture.


• Good news for analytic understanding of numerical approximations: most physics 
functions are simple (AI Feynman [Udrescu, Tegmark 1905.11481])


• Interesting side effect: quantify how much these structures help in predicting 
dynamics
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AI for Simulations — Symmetries
Introducing physicists’ bias 

 p
q

 ·p = − ∂H
∂q

·q = ∂H
∂p

Biased 
Model H

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses: 
        
Additional constraint on motion (not just energy conservation), 
i.e. motion takes place on hyper-surface in phase space

0 = ·Fk(p, q) = {H(p, q), Fk(p, q)}

,  
(Input)
p q

• • Learning Symmetries

Training the neural network
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{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444 20



AI for Simulations — Symmetries
Introducing physicists’ bias 

SCNNs: We cannot only learn the Hamiltonian but also the symmetries 
by enforcing canonical coordinates

Modified Losses for canonical coordinates: 

• Hamilton equations:          and       


• Poisson algebra:                and        

·Pi(p, q) = − ∂H(p, q)
∂Qi(p, q) = 0 ·Qi(p, q) = ∂H(p, q)

∂Pi(p, q)
{Pi, Qj} = δij {Pi, Pj} = {Qi, Qj} = 0

,  
(Input)
p q

• • Learning Symmetries

Training the neural network
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{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

Krippendorf, Syvaeri 2104.14444
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Additional Loss terms



Benefits from Physicists’ Bias

• Conserved quantities interpretable:  
 

 

  


• Using learned conserved quantities helps in 
predicting trajectories

Pc1
= − 4.2px1

− 4.2px2
− 1.3py1

− 1.3py2
, Pc2

= − 0.9px1
− 0.9px2

− 3.2py1
− 3.2py2

L = − 1.1qx1
py1

+0.9qx1
py2

+0.9qx2
py1

−1.0qx2
py2

+1.0qy1
px1

−0.9qy1
px2

−0.9qy2
px1

+1.0qy2
px2
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Symmetries  Integrability→

Krippendorf, Lüst, Syvaeri 202123

Can we search for new mathematical/physical structures?



Integrability
A lightning overview

Krippendorf, Lüst, Syvaeri 2021

• Additional constraint  on motion: 
         
How many  can there be?


• System (2n dimensional) integrable iff: 
n independent, everywhere differentiable  
integrals of motion  (in involution).


• Alternatively search for Lax pair: 
             
s.t. eom are satisfied. Conserved quantities 
via: 
                 
(additional condition for )

Fk
0 = ·Fk = {H, Fk}

Fk

Fk

·L = [L, M]

Fk = tr(Lk)
{Fk, Fj} = 0

Example: Harmonic Oscillator 

• Hamiltonian and EOM: 

 ;     ,  

• Lax pair: 

   ,   


• Conserved quantities: 
     
     
     
         …


 

H = 1
2 p2 + ω2

2 q2 ·q = p ·p = − ω2q

L = a (
p bωq

ω
b q −p ) M =

0 b
2 ω

− ω
2b 0

F1 = 2 λ
F2 = 2λ2 + 4H
F3 = 2λ3 + 12λH   spectral parameterλ…
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Integrability
Krippendorf, Lüst, Syvaeri 2021

Beisert: Lecture Notes on Integrability (p17)

Applications: 
- Classical mechanics (e.g. planetary motion) 
- Classical field theories (1+1 dimensions) 
- Spin Chain Models 
- D=4 N=4 SYM in the planar limit 
- …
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We need some deus ex machina moment…



Formulating the search as optimisation

• Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair) 
• Lax equation as loss: 

      


• Equivalence to EOM (e.g. ):  has to include  in some component (LHS of EOM),  has to 
include RHS of EOM  
          ,      

        ,  


• Avoiding mode collapse:  
         


• Total loss:  
                             

·L = [L, M] → ℒLax = ·L − [L, M]
2

·xi = fi (xi, ∂xi, . . . ) L xi [L, M]

ℒL = ∑
i,j

min
k ( | |cijk

·L − ·xk | |2 , | | ·Lij | |2 ) + ∑
k

min
ij ( | |cijk

·Lij − ·xk | |2 ) cijk =
∑batch

·Lij

∑batch
·xk

ℒLM = ∑
i,j

min
k ( | | c̃ijk [L, M]ij − fk | |2 , | | [L, M]ij | |2 ) + ∑

k
min

ij ( | | c̃ijk [L, M]ij − fk | |2 ) c̃ijk =
∑batch [L, M]ij

∑batch fk

ℒMC = max (1 − ∑ Aij ,0)
ℒLax−pair = α1ℒLax + α2ℒL + α3ℒLM + α4ℒMC

only fixed up to proportionality (loss function independent of refactor)
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Applications
Harmonic Oscillator

• Harmonic Oscillator:  

                                                ;           


• Lax Pair:  
                                         ,   


• Consistency check: 
                                     


• Conserved quantities: 

                               

H = 1
2 p2 + ω2

2 q2 ·q = p , ·p = − ω2q

L = ( 0.437 q −0.073 p
−0.666 p −0.437 q) M = ( 0.001 0.329

−3.043 −0.001)
dL
dt

= ( 0.437 ·q −0.073 ·p
−0.666 ·p −0.437 ·q) = (0.441 p 0.288 q

2.660 q −0.441 p) = [L, M]

L2 = (0.048618p2 + 0.190969q2 0
0 0.048618p2 + 0.190969q2) ⇒ trL2 ≈ 0.2 H
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Applications
Further systems

• Korteweg-de Vries (waves in shallow water): 
 
                


• Heisenberg magnet: 
 
       ,  ; constraint: 




• O(N) non-linear sigma models (Sine-Gordon equation and 
principal chiral model): 
 
                       ,     ,   .  

·ϕ(x, t) + ϕ′ ′ ′ (x, t) + 6ϕ(x, t)ϕ′ (x, t) = 0

H = 1
2 ∫ dx ⃗S 2(x) ⃗S ∈ S2

{Sa(x), Sb(y)} = ϵabcSc(x)δ(x − y)

ℒ = − Tr(JμJμ) Jμ = (∂μg)g−1 μ = 0,1
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Perturbations on integrable systems

• Harmonic Oscillator:  

        


• Are the following perturbations 
integrable: 
       ,    


• Initialise network at known solution for 
unperturbed system and see how it 
reacts to samples from perturbed 
system

H0 =
p2

x + p2
y

2m
+ ω2 (q2

x + q2
y )

H1 = ϵq2
x q2

y H2 = ϵqxqy

: non-integrableH1

: integrableH2

values for ϵ
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Conclusions and Outlook
Learning physics bias with ML

• Bias networks with physics knowledge for efficient results: 
(e.g. improving simulations with symmetry constraints)


• Finding the functional bias possible: Learning mathematical 
structures (e.g. metric, Hamiltonian, symmetries) is possible in an 
unsupervised way when “appropriate” loss functions can be 
identified:

• Symmetries from embedding layer without prior knowledge

• Symmetries from phase space samples


• Machinery for discovery of novel structures in integrability: 
Currently Lax pairs and connections for classical systems. 
Identify (some) integrable perturbations.
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Thank you!
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For talks at the interface of physics and ML: physicsmeetsml.org

2104.14444: Simulations with Symmetry Control Neural Networks

2103.07475: Integrability

2003.13679: Symmetries from Embedding Layer



Control via Symmetries

• Losses to ensure appropriate functional forms:  
 

 
 

 

 

ℒHNN =
N⋅d

∑
i=1

∂ℋϕ(P, Q)
∂pi

− dqi

dt
2

+
∂ℋϕ(P, Q)

∂qi
+ dpi

dt
2

ℒPoisson =
N⋅d

∑
i,j=1

{Qi, Pj} − δij
2

+
N⋅d

∑
i,j>i

{Pi, Pj}
2

+ {Qi, Qj}
2

ℒ(n)
HQP =

n

∑
i=1

dPi

dt 2
+ dQi

dt
−

∂ℋϕ(P, Q)
∂Pi 2

+ β
N⋅d

∑
i=n+1

dPi

dt
+

∂ℋϕ(P, Q)
∂Qi 2

+ dQi

dt
−

∂ℋϕ(P, Q)
∂Pi 2

,  
(Input)
p q

• • Learning Symmetries

Training the neural network
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{Pi, Pj} = {Qi, Qj} = 0 {Qi, Pj} = δij

·Pi = − ∂ℋ
∂Qi

·Qi = ∂ℋ
∂Pi

·Pi = 0

                  

L = ∥ ∂ℋ
∂p

− ·qtarget∥2

+∥ ∂ℋ
∂q

+ ·ptarget∥2 + . . .

: Canonical 
Transformation Network

Tψ(p, q)

Pcyclic = const .

Qcyclic

, Pother Qother
 

Hamiltonian Network
ℋϕ(Pcyclic, Pother, Qother) ,  

(Output)

·p = −
∂ℋϕ

∂q
·q =

∂ℋϕ

∂p

HNN-Loss

Effect of different loss components

Poisson-Loss
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