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Our purpose in theoretical physics is not to describe the world as we find it,

but to explain - in terms of a few fundamental principles - why the world is
the way it is.

Steven Weinberg

Can ML achieve this? [requiring explainable All

If yes, which NEW physics can we reveal?



Which problems?

Theoretical physics problems made for ML: understanding high-dimensional data

Lots of high-dimensional problems In string theory:

 Sampling String Vacua with RL and genetic algorithms
see Gary Shiu’s talk on Thursday for some of our work

* Numerical CY metrics

Today: How to extract domain knowledge/biases with ML
(e.g. what are the symmetries of a system)

Why high-dimensional data? Large function space of possible solutions



Why functional biases in ML?

ML can overcome curses of dimensionality when using symmetries

» Efficient functional biases can overcome this curse of dimensionality, e.g.
utilising symmetries of your data

ImageNet competition results
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Such functional biases (e.g. symmetries) are at the heart of all physics models
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Finding symmetries and integrable structures of physical systems

and based on (2104.14444,
2103.07475, 2003.13679),
In collaboration with:

Marc Syvaeri Dieter Lust



What to do when we do not have domain knowledge?
Can we use Al to identify the correct domain knowledge?



Underlying questions:

Are we missing mathematical/physical structures?

Can we find such structures with ML and then use them?

See also: Tegmark et al. (lots of works)



In Chemistry pre 1869?
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Significance

Motivated by the recent achievements of artificial intelligence (Al) in linguistics, we design
Al to learn properties of atoms from materials data on its own. Our work realizes
knowledge representation of atoms via computers and could serve as a foundational step
toward materials discovery and design fully based on machine learning.



In Particle Physics
pre ~ 60s/70s?
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Which tools do we need to make such
discoveries with ML in the 2020s?

DM Halos oy Finding mathematical structures to
R describe systems more efficiently

Our approach: Symmetries, Dualities, and
Integrability

Why care for ML systems? Symmetries,
dualities and integrability are standard
Pattern in Calabi-Yau data CY-metrics structures used in physical systems which
make your life easier (parameter inference,
predictions from functional bias)

— good functional bias

‘ Feature 2

Topological Feature 1 | 10



Symmetries from embedding layer



Krippendorf, Syvaeri 2020

How to search for symmetries?
The problem

1. How to find invariances?

f@) = fi$)

2. Which symmetry is behind
such an invariance?
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How to search for symmetries?
Embedding in deep layer

We need: group input with the same meaning together

Word2Vec does It:

(England - London = Paris - France)

[1301.3781, used for re-discovering periodic table 1807.05617,
classifying scents of molecules 1910.10685]

Examples: SO(2), SU(2),
discrete symmetries (CICY)

Krippendorf, Syvaeri 2020
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How to determine the symmetry?

Points: 200, r ~ N(1, 0.05), e=0.3
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Other Examples?

SU(2) generators
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Symmetries from data
(samples of phase space)



Simulations and physics bias

* The correct functional expressivity is key (vision: CNNs; geometric deep

learning). Example for prediction of trajectories:
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Battaglia et al 2016 (1612.00222)



Greydanus et al. 2019

Al and Physics for Simulations

Grav. 2-body system

Ground
truth
Physics Bias helps for predictions! Auto-Differentiation
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Can we learn more structures
from samples of phase space?




More structures from neural networks?

* |f we can train NNs to find the Hamiltonian of a system, can we use it to learn other
interesting structures?

o Symmetries of the system? E.g. via canonical transformations (cyclic coordinates
reveal conserved quantities)

 How does this work? 2 key steps:
1. Formulate your physics search problem as an optimisation problem.
2. Make sure it’s learnable for your architecture.

 (Good news for analytic understanding of numerical approximations: most physics
functions are simple (Al Feynman [Udrescu, Tegmark 1905.11481])

* |nteresting side effect. quantify how much these structures help in predicting
dynamics
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Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
| | | , |
Introducing physicists’ bias
SCNNs: We cannot only learn the Hamiltonian but also the symmetries e

by enforcing canonical coordinates paseline ™
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Grav. 2-body system

= = = Ground
Al for Simulations — Symmetries
Introducing physicists’ bias
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Benefits from Physicists’ Bias

 Conserved quantities interpretable:

P =— 4-2le — 4-2sz — 1.3py1 — 1.3py2 ] PC2 = — 0-9le — O.9px2 — 3.2py1 — 3.2py2

Cq

L =-1.1¢, p, +0.9¢, p, +0.9q, p, —1.0g, p, +1.0g, p, —0.9¢q, p, —0.9¢, p, +1.0g, p,

* Using learned conserved quantities helps In
predicting trajectories
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Can we search for new mathematical/physical structures?

Symmetries — Integrability

03 Krippendorf, List, Syvaeri 2021



Krippendorf, Lust, Syvaeri 2021

Integrability

A lightning overview

- Additional constraint F; on motion: Example: Harmonic Oscillator

e Hamiltonian and EOM:
How many F; can there be? 1 )

* System (2n dimensional) integrable iff: 2 2
n independent, everywhere differentiable

integrals of motion £, (in involution). * Lax parr i
p bwg 0 S W
» Alternatively search for Lax pair: L=a (ﬂ —p > “l_e
L =[L M) b 2
s.t. eom are satisfied. Conserved quantities * Conserved quantities:
via: Fi=2A4
F, = tr(L") F, =2A*+4H

(additional condition for {Fk, F}} — O) F3 — Zﬂ3 -+ 12/1H A... spectral parameter
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Krippendorf, Lust, Syvaeri 2021

Integrability

e

/

[ Having a Lax pair formulation of integrability is very convenient, but

\We need some deus ex machina moment...

inspiration is needed to find it,

its structure is hardly transparent,

it is not at all unique,

the size of the matrices is not immediately related to the dimensionality of the
system.

Therefore, the concept of Lax pairs does not provide a means to decide whether
any given system is integrable (unless one is lucky to find a sufficiently large Lax

air).
) Beisert: Lecture Notes on Integrability (p17)J

Applications:
- Classical mechanics (e.g. planetary motion)
- Classical field theories (1+1 dimensions)

|
P e

e
o
. LS el >
- D TN
R

- Spln Chain Models Nonlinear Sciences > Exactly Solvable and Integrable Systems
- D=4 N=4 SYM in the planar limit [Submitted on 12 Mar 2021]
- Integrability ex machina

K j Sven Krippendorf, Dieter Lust, Marc Syvaeri
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Formulating the search as optimisation

Aim: Method to find new Lax pairs with unsupervised learning (i.e. not requiring prior knowledge of a Lax pair)
Lax equation as loss:

L =[LM—%, = |L— [L,M]|2

Equivalence to EOM (e.g. X; = J; (xl-, ox,, . .. )): L has to include x; in some component (LHS of EOM), [L, M| has to
include RHS of EOM

. N ST . .0 2 paren Lis
ngzmln<HCljkL—ka ,HLZJH )+Zmln<HCljkLlJ_ka )! Cl-jkz atch .lJ
i k I 3] zbaztch A
’ . ~ 2 2 . ~ 2 - Zbatch L, M]ij
P =Y min ([1&5 LM~ fil P LM P ) + Y min (165 (LM~ £l 7). 5=
. ij . Y N A Lparen i
AVOIdmg mode Collapse: only fixed up to proportionality (loss function independent of refactor)

P\ = max (1 = |Aij| ,0)

Total loss:

Zz Lax—pair — alg Lax T 0‘23 LT a3°cz LM T a4°<Z MC
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Applications

Harmonic Oscillator

e Harmonic Oscillator: ,
1

W

2 2
(97 003 py o (0001 0.329
—0.666 p —0.437 q )’ —3.043 —0.001

q- g=p, p=-w4q

e [Lax Pair:

* Consistency check:

dL (0437¢ -0.073p\ (0441 p 0.288¢
dt  \—0.666 p —0437¢g) \2.660g —0.441p

* Conserved quantities:
i (0.048618p2 +0.1909694> 0
L —_

) = [L,M]

— = trl?~ 02 H
0 0.048618p~ + 0.190969¢°
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Applications

Further systems

. . _ A 17 17p+10
» Korteweg-de Vries (waves in shallow water): T \1g+1.0  —179 )
: . / A — 5.00% + 1.7¢" —5.00%2 —1.7¢ — 0.5
Ox, 1)+ Q" (x, 1)+ 6(x,)p'(x,1) =0 T\ 25.002 - 1.7¢" =05 5.04%2+1.7¢"
* Heisenberg magnet:
1 Am:—i3§+0.3<(1) ?)
—>, —>
H=—|dxS?*x), S € 57 constraint: o 218 zis 428,
p) "\ 2i8,-25, -iSs,
(S0 ()} = €S X)3x = ) (ron ST B )

. —)_’ . !/
=21085 + 1 €;,0:5;S; ,

* O(N) non-linear sigma models (Sine-Gordon equation and
principal chiral model):

L =-Tr(JJ", J,=00,8g ", u=0,1.
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e Harmonic Oszcillatozr:
pi +p;

H. =
0 2m

+ o’ (613 + qyz)

* Are the following perturbations

integrable:

H, = eqlq;, H,=eqq,

e |nitialise network at known solution for

unperturbed system

and see how It

reacts to samples from perturbed

system

train loss

Perturbations on integrable systems
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Grav. 2-body system

= Ground
Conclusions and Outlook
Learning physics bias with ML
: : : _ "Bagéline‘::Z:x\ |
* Bias networks with physics knowledge for efficient results: )
(e.g. Improving simulations with symmetry constraints) / :
* Finding the functional bias possible: Learning mathematical N
structures (e.g. metric, Hamiltonian, symmetries) is possible inan |~ 7
unsupervised way when “appropriate” loss functions can be b o AN
identified: i )
o Symmetries from embedding layer without prior knowledge
» Symmetries from phase space samples SCNN“"" :
 Machinery for discovery of novel structures in integrabillity: \‘
Currently Lax pairs and connections for classical systems. | |
|dentify (some) integrable perturbations.
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Thank you!

2104.14444: Simulations with Symmetry Control Neural Networks
2103.07475: Integrabillity
2003.13679: Symmetries from Embedding Layer

For talks at the interface of physics and ML: physicsmeetsmi.org
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Control via Symmetries

* | osses to ensure appropriate functional forms:
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