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Introduction

I We are studying an ensemble of matrices {X A
i,j}. A is a

label running over a finite set of objects, e.g. a finite set of
words in a language, say 200− 300 words. The indices i , j
are running over i , j ∈ {1,2, · · · ,D}, D between 100 to
2000.

I Compositional distributional semantics (Coecke,
Sadrzadeh,Clark, 2010) - in computational linguistics -
provides algorithms for the construction of ensembles of
matrices associated to certain classes of words,
depending on their grammatical structure.

I The LMT programme develops Permutation Invariant
Random Matrix Theory to study the statistics of these
matrices.



Introduction

Theoretical developments:

I Enumeration and construction of permutation invariant
matrix observables : PIMOs are associated to directed
graphs (LMT-2017 paper and 2-Matrix paper in 04/2021).

I General permutation invariant Gaussian action : There is a
13-parameter family of Gaussian actions. Parameterisation
of the couplings done using representation theory of SD.
Expectation values can be computed using Wick’s theorem
(2018 paper).

I Computer code available for these computations as part of
the 2-Matrix paper 04/2021.

I Large N factorisation property for the PIMOs 12/2021.



Introduction

Statistical Physics and computational tasks with Natural
Language Data:

I Evidence for approximate Gaussianity in matrix data from
compositional distributional semantics (2019 paper).

I New geometrical and statistical tools, based on PIMOs for
natural language tasks involving synonmyms, antonyms,
hypernyms and hyponyms. (2022 paper).

I Remark : The distinction between synonyms and
antonyms is an important challenge in distributional
semantics.



OUTLINE
1. Compositional distributional semantics :
I vectors, matrices M and tensors for words ..
I Permutation invariance motivated from the extraction of

meaning in CDS.
2. Gaussianity in permutation invariant sector
I Based on RMT and particle physics.
I 5-parameter theoretical model and tests :

3. Representation theory approach to the general
13-parameter model
I Graph basis and Rep Basis for quadratic invariants.
I Comparison to data of the 13-parameter model:

approximate Gaussianity and quantifying departures from
Gaussianity.

4. PIMOs and Language tasks.



Part 1 : Distributional Semantics and Word Vectors

The idea is that the meaning of a word is captured by the
contexts in which it occurs ( Harris 1954, Firth 1957).

One constructs vectors for words, from the frequencies with
which they occur in the vicinity of a specified set of context
words, using a collection of text (corpus).



For example if we choose context words (pet , feed ), then the
co-occurrence frequencies of a word W

a(W ) = co-occurrence frequency of W with pet
b(W ) = co-occurrence frequency of W with feed

are used to define a vector Vector(W )

Vector (W ) =

(
a(W )
b(W )

)



For example, the frequencies of Cat , Dog and Baby in a
collection of books might be

Cat = (103,92)
Dog = (99,102)
Baby = (2,80)



The similarity in meaning of Cat and Dog is reflected in the fact
that they are vectors pointing in approximately the same
direction in the space spanned by pet and feed.

v = a(pet) + b(feed)
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   CatDogBaby Page 1    

Figure: Example of Vectors from frequencies

Word vectors have been used in tasks such as computing word
similarity.



Compositional Distributional Semantics

In Coecke, Sadrzadeh, Clark (2010), formal models of
grammatical composition were combined with distributional
semantics, to develop compositional distributional semantics

This allows the construction of the meaning of sentences ( and
composite expressions) from the meaning of the constituent
words.

In this framework, words are associated with vectors, matrices,
and higher rank tensors, depending on their grammatical type.



Part 2: Linguistic Matrix Theory : Permutation invariance and
Gaussianity

The focus of LMT was to study the statistics of matrices
associated to adjectives ( and separately to verbs).

It is not practical to make sense of the distributions of the
individual matrix elements.

We use the ideas of Random Matrix Theory (RMT) : We want
to model aspects of a complex system (in this case adjective
matrices in natural language) using probability distributions
over large matrices.

Following Wigner and Dyson, RMT has been applied to
complex nuclei, molecules, chaotic systems, financial
correlators, biological networks etc.



Random Matrix Theory - Matrix Integrals

The simplest RMTs are defined by

Z(M) =

∫
dM e−tr M2

M is a hermitian matrix ( the Hamiltonian in Wigner’s original
applications).

The weight is invariant under U(D) symmetry

M → UMU†

tr M2 → tr M2



Symmetry

The unitary invariance corresponds to base changes in the
Hilbert space.

In the context of the Linguistic Application, some of the
observables considered have continuous symmetries.

E.g. Given two vectors pi and qi , the inner product

D∑
i=1

piqi

is used to measure word similarity.



Symmetry

But in general, we don’t expect all the information in the word
vectors/tensors to be invariant under these continuous
symmetries.

The symmetry of permutations SD is still expected - as it
corresponds to re-ordering the context words.

Indeed if we consider the quantity (Kullback-Leibler divergence)

∑
i

pi log pi − pi log qi

which is used to measure entailment - this is SD invariant but
not O(D) invariant.



LMT-2017 : Building matrices.

In the paper, LMT-2017, the CS experts constructed an
ensemble of matrices for adjectives. Build vectors for nouns
such as “car” using frequency counts, processed according to
traditional Distributional Semantics methods ; and also noun
phrases such as “black car”. Then use linear regression to find
matrix for “black”, optimised to ensure that the matrix “black”
applied to noun-vector “X” gives the vector for “black X”.

This follows earlier work in CDS, e.g. ( Baroni, Bernardi,
Zamparelli, 2014 ; Baroni, Zamparelli, 2010, Grefenstette, Dinu,
Zhang, Sadrzadeh, Baroni, 2013)

Other methods involve machine learning (Sadrzadeh,
Wijnholds, Clark 2020)



Qualitative inspection of random matrix elements is supportive
of the idea of Gaussians for the LR models.

Figure 1: Histograms for elements of adjective matrices

with data. In this work we take a di↵erent approach: a blend between statistics and
e↵ective quantum field theory guided by symmetries.

We start by a qualitative evaluation of the distribution of elements from adjective
matrices of size 2000 ⇥ 2000, created as detailed in Section 4.3. In Figure 1 we plot
histograms for di↵erent Mij’s corresponding to selected (i, j) pairs. Each histogram shows
the distribution of the specific element across all adjectives in our dataset; each bar along
the horizontal axis corresponds to a di↵erent value interval, while the height of the bar
reflects frequency (i.e. for how many words the specific element falls within the interval
represented by the bar). These histograms, presented here for demonstrative purposes,
look qualitatively like Gaussians.

This motivates an investigation of Gaussian statistics for word matrices, along the lines
of random matrix theory. In the simplest physical applications, the means and variances
of diagonal and o↵ diagonal elements are equal for reasons related to underlying contin-
uous symmetries. When M is a hermitian operator corresponding to the Hamiltonian of
a quantum system described by states in a Hilbert space, there is a unitary symmetry
preserving the inner product. Invariants under unitary group symmetries in this case
are traces. The quadratic invariant trM2 sums diagonal and o↵-diagonal elements with

12



Recap : One-variable Gaussian (normal) distributions.

The shape is described by a function of the height x , and
parameters µ, σ

f (x : µ, σ) =
e
−µ2

2σ2

√
2πσ2

e−
x2

2σ2 +µx
σ2

The mean and standard deviation are calculated by doing
integrals

< x > =

∫ ∞
−∞

dx f (x : µ, σ) x

< x2 > =

∫ ∞
−∞

dx f (x : µ, σ) x2

< x >= µ
< x2 >= µ2 + σ2



Intro - Gaussian (normal) distributions.

All the higher moments < xn > ( for n ≥ 3) )

< xn >=

∫ ∞
−∞

dx f (x : µ, σ) xn

are functions of µ, σ, hence are determined by < x >,< x2 >.

In modeling a data set by the Gaussian model, calculate
< x >expt , < x2 >expt to determine µ, σ. Then predict and
compare.



LMT : Permutation Invariant Gaussian Matrix theory for NLP
data

The partition function of the 5-parameter model in LMT-2017 is

Z(Λ,a,b, J0, JS) =

∫
dM e−

Λ
2
∑D

i=1 M2
ii−

1
4 (a+b)

∑
i<j (M2

ij +M2
ji )

e−
1
2 (a−b)

∑
i<j Mij Mji +J0 ∑

i Mii +JS ∑
i<j (Mij +Mji )

The observables of the model are SD invariant polynomials in
the matrix variables:

f (Mi,j) = f (Mσ(i),σ(j))

Expectation values of f (M) are computed as

〈f (M)〉 ≡ 1
Z

∫
dMf (M)EXP

as functions of J0, JS,Λ,a,b.



Computations of expectation values in a Gaussian theory use
the formula

Z =

∫
dx exp

−1
2

N∑
i,j=1

xiAijxj +
∑

i

sixi

 =

√
(2π)N

det A
exp

(
1
2

si (A−1)ijsj

)
. (1)

which is fundamental to perturbative QFT.

In the above, we have a product of D integrals for Mii and there
are D(D − 1)/2 decoupled integrals involving, for each
1 < i < j < D, a quadratic form involving M2

ij ,M
2
ji ,MijMji . The

computation of the generating function for expectation values
involves inverting these 2× 2 quadratic forms.



Permutation Invariant Gaussian Matrix theory : Fixing
parameters from data

The linear averages

〈
∑

i

Mii〉 〈
∑
i 6=j

Mij〉

and the quadratic averages

〈
∑

i

M2
ii 〉 〈

∑
i 6=j

M2
ij 〉 〈

∑
i 6=j

MijMji〉

are compared with corresponding experimental averages

〈f (M)〉EXPT =
1

Nw

∑
w

f (Mw )

obtained by summing over words. f (M) involves sum over
matrix elements.
The comparison determines the 5 parameters of the model
J0, JS,Λ,a,b.



Comparing cubic and quartic averages

With the parameters of the Gaussians thus fixed, we compare
theory and experiment.

Md :3 ≡
∑

i

〈M3
ii 〉

Mo:3,1 ≡
∑
i 6=j

〈M3
ij 〉

Mo:3,2 =
∑

i 6=j 6=k

〈MijMjkMki〉

For simpler observables, theory and expt within 40 percent

(Md :3)THRY

(Md :3)EXPT
= 0.57

near D = 2000.

Within realm of perturbation theory.

For Mo:3,2 large difference. Ratio is 0.013



PART 3: General permutation invariant Gaussian matrix model.

∑
i

M2
ii

∑
i,j

M2
ij

∑
i,j

MijMji
∑
i,j

MiiMjj
∑
i,j

MiiMij
∑
i,j

MijMjj

∑
i,j 6=k

MijMjk
∑

i,j 6=k
MijMik

∑
i,j 6=k

MijMkj
∑

i,j 6=k
MijMkk

∑
i,j,k ,l

MijMkl

Figure: SD invariant functions and corresponding graphs illustrated
for the 11 quadratic invariants



The most general permutation invariant Gaussian will have 13
parameters. 2 for the linear invariants, and 11 for the quadratic
invariants.

e−
∑11

a=1 λaMij B
ijkl
a Mkl

To solve this Gaussian model, we want to invert this quadratic
form. ∑

a

λaBijkl
a = λ1δ

ijδjkδkl + λ2δ
ikδjl + · · ·+ λ11

RECALL :

Z =

∫
dx exp

−1
2

N∑
i,j=1

xiAijxj +
∑

i

sixi

 =

√
(2π)N

det A
exp

(
1
2

si (A−1)ijsj

)
. (2)

Using the graph basis description of the quadratic form, not clear how
to invert it, and not clear how to choose λa to ensure convergence of
the measure.



We can use symmetry - representation theory of SD in order to
bring the quadratic form to a nearly diagonal form. When we
make full use of symmetry, we reduce the problem to the
inversion of two numbers, and a symmetric 2 by 2 matrix and a
symmetric 3 by 3 matrix.

Invariance under M → UσMU†σ, for matrices Uσ corresponding
to permutations σ ∈ SD amounts to imposing invariance
Mij → Mσ(i)σ(j)

Linear combinations of Mij form a representation of SD which is
VD ⊗ VD. VD is spanned by ei for i ∈ {1,2, · · · ,D}.

σ : ei → eσ(i)
σ : Mij → Mσ(i)σ(j)



VD = V0 ⊕ VH

V0 spanned by e1 + e2 + · · ·+ eD. VH is spanned by ei − ej .

VD ⊗ VD = 2V0 ⊕ 3V[D−1,1] ⊕ V[D−2,2] ⊕ V[D−2,1,1]

= 2V0 ⊕ 3VH ⊕ V2 ⊕ V3

Span {Mij : 1 ≤ i , j ≤ D} = 2V0 ⊕ 3VH ⊕ V2 ⊕ V3

=
2⊕

α=1

V (α)
0 ⊕

3⊕
α=1

V (α)
H ⊕ V2 ⊕ V3



Mij =
∑

Λ,mΛ,α

CΛ,mΛ,α
ij SΛ,mΛ,α

Symmetric (VH ⊗ VH) = V0 ⊕ VH ⊕ V3
Anti-symmetric (VH ⊗ VH) = V2

The matrix model computations will not need the explicit forms
of the Clebsch for V2,V3 – will need projectors – which are
actually simple.



Because of the tensor product decompositions above,
projectors for V2,V3 in VD ⊗ VD can be written in terms of
polynomials F (i , j).

F (i , j) =
D−1∑
a=1

Ca,iCa,j = δij −
1
N

Computations of expectation values reduce to F -sums.
For example

< k , l |PV2 |i , j >=
1
2

(Fk ,iFl,j − Fl,iFk ,j)



The model is defined by integration. The partition function is

Z(µ1, µ2; ΛV0 ,ΛH ,ΛV2 ,ΛV3 ) =

∫
dMe−S

where the action is a combination of linear and quadratic functions.

S = −
2∑
α=1

µ
V0
α SV0 ;α +

1

2

2∑
α,β=1

SV0 ;α(ΛV0
)
αβ

SV0 ;β +
1

2

D−1∑
a=1

3∑
α,β=1

SH;α
a (ΛH )

αβ
SH;β

a

+
1

2
ΛV2

(D−1)(D−2)/2∑
a=1

S
V2
a S

V2
a +

1

2
ΛV3

D(D−3)/2∑
a=1

S
V3
a S

V3
a .

Tensor product of irreps R ⊗ S contains the trivial V0 only if R = S and V0 ⊂ Sym2(R).
The expectation values of permutation invariant polynomials f (M) are defined by

〈f (M)〉 =
1

Z

∫
dMe−S f (M) .

11 = 1 + 1 + (2)(3)/2 + 3(4)/2 = 1 + 1 + 3 + 6 = 11

The quadratic form already partially diagonalised. Change from
euclidean measure in M to euclidean measures in S is orthogonal so
Jacobian for change of measure is just 1.



〈SV0 ;α〉 =
∑
β

(Λ−1)αβ µβ .

We introduce the definition

µ̃α ≡
∑
β

(Λ−1)αβ µβ .

We have defined variables µ̃1 , µ̃2 for convenience. The variables transforming according to VH , V2, V3 have
vanishing expectation values

〈SH;α
a 〉 = 0

〈SV2
a 〉 = 0

〈SV3
a 〉 = 0 .

The quadratic expectation values are

〈SVi ;αSVj ;β〉 = 〈SVi ;αSVj ;β〉conn + 〈SVi ;α〉 〈SVj ;β〉 .

where

〈SVi ;α
a S

Vj ;β

b 〉conn = δ(Vi , Vj )(Λ−1
Vi

)αβδab .



∑
i

〈Mii 〉 = µ̃1 +
√

(D − 1)µ̃2

∑
i,j

〈Mij 〉 = Dµ̃1

∑
i,j

〈Mij Mij 〉 = µ̃
2
1 + µ̃

2
2 + (Λ−1

V0
)11 + (Λ−1

V0
)22 + (D − 1)(Λ−1

H )22 + (D − 1)(Λ−1
H )33

+ (D − 1)(Λ−1
H )11 +

D(D − 3)

2
(ΛV2

)−1 +
(D − 1)(D − 2)

2
(ΛV3

)−1

Similar equations for the other 10 quadratic graph-basis observables.
These are identified with word averages and used to determine the
µ,Λ parameters.



Given all the linear and quadratic expectation values, we can
use Wick’s theorem to calculate theoretical cubic and quartic
expectation values.

∑
i

〈M3
ii 〉 = 3

( 1

D
µ̃1 +

√
(D − 1)

D
µ̃2

)
×
(

1

D
(Λ−1

V0
)11 +

(D − 1)

D
(Λ−1

V0
)22 + 2

√
(D − 1)

D
(Λ−1

V0
)12

+
(D − 1)

D
(Λ−1

H )11 +
(D − 1)

D
(Λ−1

H )22 +
(D − 1)(D − 2)

D
(Λ−1

H )33 + 2
(D − 1)

D
(Λ−1

H )12

+ 2
(D − 1)

D

√
(D − 2)(Λ−1

H )13 + 2
(D − 1)

D

√
(D − 2)(Λ−1

H )23 +
1

3D

(
µ̃1 +

√
(D − 1)µ̃2

)2
)
.

∑
i1,i2,i3,i4,i5,i6,i7

〈Mi1 i2
Mi3 i4

Mi5 i6
Mi7 i7
〉 = 3D3(Λ−1

V0
)2
11 + 3D3

√
(D − 1)(Λ−1

V0
)11(Λ−1

V0
)12

+ 6D3
µ̃

2
1(Λ−1

V0
)11 + 3D3

√
(D − 1)µ̃1µ̃2(Λ−1

V0
)11 + D3

√
(D − 1)µ̃2

1(Λ−1
V0

)12+

+ D3
µ̃

4
1 + D3

√
(D − 1)µ̃3

1µ̃2.



∑
i M3

ii

∑
i,j M3

ij
∑

i,j,k MijMjk Mki
∑

i,j,k MijMjjMjk

∑
i,j,k,l MijMkk Mll

∑
i,j,k,l MijMjk Mll

∑
i,j,k,l,m MijMklMmm

∑
i,j,k,l,m,n MijMklMmn

∑
i1,...,i7

Mi1 i2 Mi3 i4 Mi5 i6 Mi7 i7

∑
i1,...,i8

Mi1 i2 Mi3 i4 Mi5 i6 Mi7 i8

Figure: The 10 higher order observable graph diagrams labelled with
the associated sum.



Adjectives at D = 2000 :

Graph Expectation value Theoretical val. Experimental val. Ratio
1

∑
i 〈(Mii )

3〉 1.44× 10−1 2.52× 10−1 0.57
2

∑
i,j 〈(Mij )

3〉 8.43× 10−1 3.65 0.23
3

∑
i,j,k 〈Mij Mjk Mki 〉 1.68 10.6 0.16

4
∑

i,j,k 〈Mij Mjj Mjk 〉 53.8 80.1 0.67

5
∑

i,j,k,l 〈Mij Mkk Mll 〉 2.94× 106 3.03× 106 0.97

6
∑

i,j,k,l 〈Mij Mjk Mll 〉 4.83× 104 5.04× 104 0.96

7
∑

i,j,k,l,m〈Mij Mkl Mmm〉 5.93× 107 6.01× 107 0.99

8
∑

i,j,k,l,m,n〈Mij Mkl Mmn〉 1.38× 109 1.40× 109 0.98

9
∑

i1...i7
〈Mi1 i2

Mi3 i4
Mi5 i6

Mi7 i7
〉 7.83× 1010 8.14× 1010 0.96

10
∑

i1...i8
〈Mi1 i2

Mi3 i4
Mi5 i6

Mi7 i8
〉 1.86× 1012 1.96× 1012 0.95

There are in fact 52 cubic observables (graphs between one and 6
nodes) and 296 quartic observables ( graphs between one and 8
nodes )



The above ratios give strong evidence that Matrix constructions in
compositional distributional semantics can provide another arena for
the application of approximate gaussianity and symmetry (here
permutation symmetry) to real world data.

The widespread applicability of traditional RMT a la Wigner in data
sciences beyond physics (e.g. financial correlations, gene networks
etc.) can be taken as evidence for Gaussianity, for observables
invariant under continuous symmetries (e.g. trM3 , trM2trM). The
results above are an indication that the Gaussianity extends to more
general permutation invariant observables.
Approximate Gaussianity - generalized to higher dimensional QFT - underlies the applicability of perturbative QFT to
particle physics, cosmology ( e.g. CMB fluctuations) and elsewhere in condensed matter physics. The applicability
of gaussian matrix models (zero dim QFT), with continuous or discrete symmetries, to matrix data could be an
avenue for importing further insights from QFT to data.



In the paper 2022-01 we have done further Gaussianity tests
with datasets of machine-learned matrices for verbs. We think
a more robust measure of Gaussianity is∣∣∣∣〈Oa(M)〉expt − 〈Oa(M)〉theor

〈δOa(M)〉expt

∣∣∣∣
Adjectives normalized differences ( consistent with the picture
with ratios)

jj 300 jj 700 jj 1300 jj 2000
0.238 0.229 0.273 0.307
0.192 0.653 0.884 1.039
0.020 0.765 1.160 1.375
0.054 0.242 0.307 0.366
0.011 0.024 0.026 0.022
0.052 0.002 0.041 0.040
0.014 0.016 0.017 0.011
0.024 0.021 0.022 0.015
0.037 0.037 0.038 0.025
0.047 0.042 0.043 0.031
0.306 0.268 0.322 0.349
0.304 0.207 0.326 0.382
0.145 0.080 0.118 0.121
0.031 0.215 0.246 0.296
0.076 0.185 0.279 0.348



Extends to machine-learned verbs :

obj 01sub09obj 02sub08obj subj
0.205935 0.205601 0.200036 0.0648322
0.053190 0.042145 0.017755 0.101824
0.023944 0.041406 0.063718 0.0181965
0.067072 0.062928 0.032055 0.139924
0.054866 0.044782 0.031757 0.073066
0.020466 0.044131 0.060853 0.039253
0.079102 0.083503 0.084444 0.015464
0.086337 0.064538 0.023994 0.089363
0.068266 0.051903 0.020784 0.043241
0.092624 0.086513 0.059468 0.085318
0.169206 0.166239 0.16634 0.130891
0.173461 0.175396 0.181464 0.154943
0.132151 0.142041 0.166086 0.048161
0.011549 0.023646 0.048226 0.051810
0.067946 0.032733 0.021534 0.040914



Part 4 : Natural Language tasks.

A dataset of matrices constructed by adapting word2vec in
J. Maillard, S. Clark, E. Grefenstette, "A type-driven tensor-based semantics for CCG," Proceedings of the Type
Theory and Natural Language Semantics Workshop, EACL 2014.

G. Wijnholds, M. Sadrzadeh, S. Clark, "Representation learning for type-driven composition," ( WSC2020)
Proceedings of the 24th Conference on Computational Natural Language Learning, pgs. 313-324, 2020.

(WSC2020) construct an ensemble of matrices of size 100× 100, for
a dataset of verbs in SimVerb3500.

SimVerb3500 contains pairs of verbs, organised by labels :
synonym-pairs, antonym-pairs, hypernym-hyponym pairs,
co-hyponym pairs, no-relation pairs.



Observable-deviation vectors for verbs

vA
a = Oa(MA)− 〈Oa(M)〉expt

where

〈Oa(M)〉expt =
1

Nverbs

∑
A

Oa(MA)



List of observables used

# observable
1 Mii
2 Mij
3 MijMij
4 MijMji
5 MiiMij
6 MiiMji
7 MijMik
8 MijMkj
9 MijMjk

10 MijMkl

# observable
11 (M2)ii
12 MiiMjj
13 MiiMjk
14 (M3)ii
15 (M3)ij
16 MijMjkMki
17 MijMjjMjk
18 MijMkkMll
19 MijMjkMll

space

# observable
20 MijMklMmm
21 MijMklMmn
22 MijMklMmnMoo
23 MijMklMmnMop

24 (M4)ii
25 (M4)ij
26 MijMjkMpqMqr
27 MijMjkMkl
28 MjkMklMlm

space

Table: A complete list of the observables used in this paper.
Summations over every index are understood. The horizontal lines
mark the different subsets used to build the observable vectors.
These subsets are made out of 13, 23, 28 and 15 (=28-13)
observables.



A physics motivated choice of inner product for the vectors

gdev (vA, vB) =
∑

a

vA
a vB

a
〈(δOa(M))2〉 ,

〈(δOa(M))2〉 =
1

Nverbs

∑
A

(Oa(MA)− 〈Oa(M)〉expt )
2

This orthogonal choice motivated by large N factorisation :
distinct combinatoric structures associated with invariant are
orthogonal at large N - trace structures for continuous
symmetries, graphs for SN .



Digression : Large N factorisation for permutation invariant
matrix observables (PIMOs)

In the paper 2021-12 we prove a large N factorisation result for
PIMOS.
At a special point in the 13-parameter space of permutation
invariant models, we have just the simplest O(N) invariant
action.

S = trMMT

With this action the 2-point function defines an inner product for
observables

〈: Oa(M) :: Ob(M) :〉

In this inner product, distinct graphs are orthogonal at large N.
Reasonable to expect this should generalize.



A second choice of inner product for the vectors

A choice from statistics (Mahalanobis metric )

gMaha
dev (vA, vB) =

∑
a,b

vA
a KabvB

b

Kab is the inverse of the correlation matrix 〈δOaδOb〉EXPT .
Notice that if the observables are uncorrelated then
Kaa = 1/〈(δOa)2〉, and we recover the orthogonal metric.



Cosine of angle : A familiar measure in a new embedding
space

A commonly used measure of “semantic similarity” in
distributional semantics is the “cosine of angle ” between
vectors for words.

In traditional distributional semantics applications, we are
looking at vectors where the different components correspond
to different context words (or linear combinations of context
words).

Here we adapt to the setting of Observable deviation vectors
equipped with a metric (one of the two above).

Cos(vA, vB) =
gval(vA, vB)√

gval(vA, vA)gval(vB, vB)



Statistical comparison of semantic relations

We compare the cosines, averaged over synonym-pairs,
antonym-pairs and no-relation pairs.



Separation of SYN/NONE/ANT

Means of cosines of synonym, none and antonym pairs

ANTONYM NONE SYNONYM
obj 0.093± 0.439 0.168± 0.506 0.284± 0.480

01sub09obj 0.088± 0.441 0.169± 0.504 0.288± 0.477
02sub08obj 0.092± 0.445 0.172± 0.502 0.295± 0.473

subj 0.148± 0.450 0.196± 0.517 0.314± 0.478

The means for synonyms,none, antonyms are consistently
separated. 4 rows are discrete choices in the ML construction.
This is for 13-dimensional vectors. SImilar results for 28- or
10-dimensional vectors.



Geometrical divide for distinguishing SYN/ANT

DA DS

DA +
∆A

∆S

(DS − DA)

2︸ ︷︷ ︸

predicted antonyms predicted synonyms

Figure: Figure illustrating antonym-synonym separation criterion



Success rates

With the orthogonal metric (results with the Mahalanobis metric
are similar)

1
Ntot

∑
i∈cat

N(i)
correct

N(i)
tot

hhhobjhhh 01sub09obj 02sub08obj hhhsubjhhh
13 obs 0.560 0.555 0.557 0.523
15 obs 0.579 0.568 0.575 0.554
28 obs 0.556 0.561 0.578 0.564



Lengths for distintiguishing hypernym from hyponym in a
hyper/hypo pair

Hyper/Hypo Example : Animal /Dog.

Hypernym is a more general class. Hyponym is an example
within the class.

Statistical physics concepts (e.g. entropy ) have been applied
to hyper/hypo distinction in conventional word vectors.

Adapting these ideas to the present case, one can argue that
the lengths of the observable deviation vectors should be
longer for the hypernym in a pair than the hyponym pair.
“Chasing hypernyms in vector spaces with entropy,” E Santus, A Lenci, Q Lu, SS Im Walde, 2014, Proc. 14th

conference of the European Chapter of Assoc. Comp. Ling.

We apply in ( the 2022-01 paper ) this expectation to predict -
based purely on the ODVs - whether a word in a hyper/hypo
pair is a hypernym or hyponym.



Using that to predict, using orthogonal metric, we find the
following success rates :

ratio =
# of pairs for which hyper > hypo

all pairs of hyper/hyponyms

hhh28 obshhh hhhhigh nodehhh hhhlow nodehhh
0.627 0.602 0.629

With Mahalanobis metric, we get better performance on this
task :

hhh28 obshhh hhhhigh nodehhh hhhlow nodehhh
0.677 0.652 0.653



Summary and Outlook

Permutation invariant matrix observables (PIMOs) show evidence for
approximate Gaussianity in natural language data.
They show promising results in natural language tasks.
A future direction is to use Machine Learning techniques to explore
the parameter spaces in these tasks ( e.g. parameters in the metric ;
divides ) to get better performance in specific tasks.
These investigations of Gaussianity and statistics can be applied very
generally – whenever there is a collection of real world entities (e.g.
genes, proteins) such that each entity can be associated to a matrix,
leading to a coherent ensemble of matrices.
Theoretical directions : Large N factorization, should have
generalizations ; 2-matrix and tensor models ...



Supplement 1: The parameters of the 5$-parameter model.

Comparisons done for a range 300 ≤ D ≤ 2000 in steps of 100.

J0

D
= 1.31× 10−2 ,

Λ

D2 = 2.86× 10−3

Js

D
= 4.51× 10−4 ,

a
D2 = 1.95× 10−3 ,

b
D2 = 2.01× 10−3

Figure: The ratio Λ
D2 stabilizing at large D.



Supplement 2: The parameters of the 13-parameter model.
To 3 significant figures, the parameter values for D = 2000 are given below.

Parameter Value

µ̃1 4.84× 10−1

µ̃2 1.01

(Λ−1
V0

)11 4.00× 10−2

(Λ−1
V0

)12 5.10× 10−2

(Λ−1
V0

)22 2.49× 10−1

(Λ−1
H )11 1.45× 10−2

(Λ−1
H )12 1.02× 10−4

(Λ−1
H )13 2.28× 10−4

(Λ−1
H )22 2.91× 10−4

(Λ−1
H )23 1.22× 10−4

(Λ−1
H )33 7.27× 10−4

(Λ−1
V2

) 2.49× 10−4

(Λ−1
V3

) 2.41× 10−4

From : 1912** paper ; using equations for 13-parameter model from the 1810** paper and data from 1703** paper.



Supplement 3: Object and subject construction in ML method
for verbs

To test whether large matrix representations of words can be effectively modelled with Gaussianity operators, we
use the verb matrix representations obtained in (Clark,Sadrzadeh,Wijnholt-2020). These matrices were obtained
using an extension of the skipgram model. In this model, predictions are made for the representation n of a specified
target word, for the representation c of the word that follows or precedes it, the context word, and for the
representation c̄ of words that never apear as context of the target. These predictions are updated by minimizing the
following objective function ∑

c∈C

log σ(n · c) +
∑
c̄∈C̄

log σ(−n · c̄),

until convergence is reached. Here σ is a sigmoid function that rescales its input to values between 0 and 1.
In the case where the targets are transitive verbs, a matrix representing the verb is multiplied with a vector
representating either an object or a subject, resulting in n, and Eq. 3 is minimized using a verb’s subject or object
vector representation, respectively, as contexts c and c̄.


