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Machine Learning Models
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x is an input, 0 are the parameters

i=1,...,n04 is a vectorial index

>

>

» § € D is a sample index

» generic models are nonlinear in 6
>

linear models are special
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Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well
understood type of curve fitting.

(i) In nonlinear models the effective features evolve over the
course of training:

d(x) = ¢(x;0%),

allowing for nontrivial representation learning.

(iii) For nonlinear models, the solution depends on the method
of training and optimization.

Neural networks are nonlinear models with these two properties!
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A Familiar Example

The simplest model is a (generalized) linear model:
zi(0) = Wil + Wirx + Wiax® + Wizx®

» Linear in both the parameters 6 = {b;, Wj;}.

» Here, we've subsumed the bias vector into the weight matrix
by setting ¢o(x) =1 and Wiy = b;.

> Fixed basis of feature functions ¢;(x) lets it approximate
functions that are nonlinear transformations of the input.

» (e.g. for a 1-dimensional function we might pick a basis
$j(x) = {1,x,x%,x3} and fit cubic curves.)
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Linear Regression
Supervised learning with a linear model is linear regression

L4(0) = % Z ff [y;;& - i: W1j¢j(X&)] )

GeA i=1 j=0

where y; = fi(x) is an observed true output or /abel.
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2

1 Nout nf

La(0) =5 2;42; [)’i;& - Zo WU¢1(X&)] :
QcA I= J=

where y; = fi(x) is an observed true output or /abel.

> We could solve by direct optimization:

_dLy

0=
dW;

W=wx=

> We could solve by gradient descent:

Wyt +1) = Wy(t) -
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The Kernel

Let us introduce a new Np x Np-dimensional symmetric matrix:

nf

ks, = k(xs,,%5,) = Y 0j(x5,) j(xs,) -

Jj=0

As an inner product of features, the kernel ks, 5, is a measure of
similarity between two inputs X;.5, and Xx;.5, in feature space.

We'll also denote an N 4-by-N 4-dimensional submatrix of the
kernel evaluated on the training set as ks, a, with a tilde. This lets
us write its inverse as k®1%2 which satisfies

Ta1do . . _ 501
3 kg, = 6%
drcA
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Linear Models and Kernel Methods

Two forms of a solution for a linear model:

P parameter space — linear regression
ng
Z,'(XB; 9*) = Z V‘/Ijqu(Xﬂ)
j=0
» sample space — kernel methods

z,-(xﬂ-;G*): Z k-dlzaldzy;;&2.

a1,02€A
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Two forms of a solution for a linear model:

P parameter space — linear regression
ng
Z,'(XB; 9*) = Z V‘/Ijqu(Xﬂ)
j=0
» sample space — kernel methods
z,-(xﬂ-;G*) = Z k-dlzaldzy;;&2.

a1,02€A

Features of this model, expressed as ¢;(x) or ks,s,, are fixed.
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Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a
nonlinear model, specifically a quadratic model:
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Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a

nonlinear model, specifically a quadratic model:

ng € nf
zi5(0) = > Wioi(xs) + 5 > Wi Wiy, (x5)

Jj=0 J1,j2=0

» It's nonlinear because it's quadratic in the weights: Wj;, Wj;,.

> ¢ < 1 is small parameter that controls the size of the
deformation.

» We've introduced (n¢ + 1)(nf + 2)/2 meta feature
functions, 1;,;,(x), with two feature indices.
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Quadratic Models

To familiarize ourselves with this model, let’'s make a small change
in the model parameters Wj; — Wj; + dWj;:

ng nf
zi(x5: 0 + dO) = zi(x5:0) + > dWj; | dj(x5) + € > Wiy, i(xs5)
Jj=0 J1=0

ng
€
4 5 Z CI'VV,:,'1 dVVijz 7vb.iljz (X5)'
J1.2=0
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To familiarize ourselves with this model, let’'s make a small change
in the model parameters Wj; — Wj; + dWj;:

ng nf
zi(x5: 0 + dO) = zi(x5:0) + > dWj; | dj(x5) + € > Wiy, i(xs5)
Jj=0 J1=0

ng
€
4 5 Z (J'VV,:,‘1 dVVijz 7vb.iljz (X5)'
J1.2=0

Let us make a shorthand for the quantity in the square bracket,

d. i ;0 i
zcﬁ/(vé,--) = ¢j(xs) + € kz:% Wiktbii(xs) ,

05 (x5:0) =
which is an effective feature function.
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
parameter-dependent feature function, qbg(x(;; 0).
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
parameter-dependent feature function, gbg(x(;; 0).

> The <Z>,-EJ-(X5; 0) learns with update dWi:

950510 + dO) = 95(x5: 0) + € 3 dWi i (xs)
k=0

» For comparison, for the linear model we'd have:

zi(xs; 0 + d0) = z(xs; 0 +Zd i 0j(xs)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model's output evolves in a more complicated nonlinear way.
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Quadratic Regression

Supervised learning a quadratic model doesn't have a particular
name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
1 Nout ng € nf
La(0) =5 SN lvia — > Wy di(xa) — 5 > Wy Wit (xa)
aeAi=1 Jj=0 J1,2=0
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name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
1 Nout ng € nf
La(0) =5 SN lvia — > Wy di(xa) — 5 Y Wiy Wip i, (xa)
aeAi=1 Jj=0 J1,2=0

The loss is now quartic in the parameters, and in general

_dLy

= d|/VU ,
W=w=

0

doesn't give analytical solutions or a tractable practical method.
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Quadratic Regression

Supervised learning a quadratic model doesn't have a particular
name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
Z Z |:y: It Z VVij Qsj(xa - Z ij1 M/Uéwjljz (Xd) .

aeA i=1 Jj=0 Jl J2=0

The loss is now quartic in the parameters, but we can optimize with
gradient descent:

Wi(t + 1) = Wy(t) — ndWJ
YW= (r)

This will find a minimum in practice.
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Quadratic Model Gradient Descent Dynamics

The weights will update as

dLa

Wii(t +1) = W(t) -
Wi=Wj(t)

= Wy(t) = n Y o5a(t) (zia(t) — via) -
While the model and effective features update as

zi;(;(t-i- 1) 22,5 +ZdM/U ¢U 5(1:)

ZdWm ) dWi (8) Y11 (x5),

Jl J2

Ua(f+ 1) ¢U5 )+€Zdek(f)¢kj(Xzs)-

k=0
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Aside: Meta Kernel

Useful to define a meta kernel:

nf

Hootrsr = €Ujp(Xse) B (x5) B (x5,)-

J1:2=0
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Aside: Meta Kernel

Useful to define a meta kernel:

nf

Hootrsr = €Ujp(Xse) B (x5) B (x5,)-

J1:2=0

» This is a parameter-independent tensor given entirely in terms
of the fixed ¢;(x) and v, j,(x) that define the model.

» For a fixed input xs,, fts,6,6, COmputes a different
feature-space inner product between the two inputs, x5, & Xj,.

» Due to the inclusion of € into the definition of 15.5,5,, We
should think of it as being parametrically small too.
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Solution

Zi;B(oo)
Z kB&I ;&1542”;&2

a1,00€A

. 065046 o Q16263604 ,
T Z #&15562 Z k k a1 ZA Yiaz Yiag
81,04 €A | as,a6€A

. . Ta8sd6,, . . . G16003G4
+ E Ha516, — E k &Sk Késéras | £g Yias Vi
A1,...,04EA L as,06€A

where the algorithm projectors are given by
Q1020304 163 A28 T b yo1 050304
ZA :k13k24_zk25X” ,
Gs
231&2&3544 E;&1&3;6¢2&4 - Z ka2a5X0410450430¢4 + 77X041Oé2043044
as
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Here, an inverting tensor is implicitly defined:

050G,
1 - -
Z chltla2a3a47 {50630656044546 - (5543545 - 77k543545)(65z4546 - nkda,de)}
as,04€A n
= Z leéld2&3a4( G305 014016 +50¢3a5;a4016 77;513515%&4540 .
a3,04€A
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

> If we'd optimized by direct optimization, we'd have found:

Zifaisde _ o ziadsie _ 1 renas e

» In the ODE limit, we get different predictions

01626304 _ 701020304 — T A183 G20 T by G538
Z8 = Z8 = kfbs ) S kaafds x| ,
as
z : Q16263604 (7. . S . T _ 501 G
XII (k0130456a4aﬁ + 6063015 ka4aﬁ) =0 &55 G 0

a3,04€A
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Representation Learning

For simplicity, let's pick the direct optimization solution:

U . n o n 1es o ~n -
Z§1a2a3a4 — 0’ Zglazaz.aza — T Gnds bads
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Representation Learning

For simplicity, let's pick the direct optimization solution:
phcity, p
2241542543514 -0 231&2&3544 _ 1;541543?342&4
, .

Then, we can define a trained kernel whose functional form
effectively depends on the data:

1 .
k?f;élég(‘g*) = k5152+§ Z (/1’5152071+M5251541)ka1a2yi;542+0(62) :
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Representation Learning

For simplicity, let's pick the direct optimization solution:

2241542543514 =0, Z§1&2&35¢4 _ 1;541543?32544.

Then, we can define a trained kernel whose functional form
effectively depends on the data:

1 .
k?f;élég(‘g*) = k5152+§ Z (/1’5152071+M5251&1)ka1a2yi;5z2+0(62) :
a1,00€A

Now the nearly-kernel prediction formula can be compressed,

Z ku ﬁalwf’f Vi + 0(62) ’

a1,6p€A

taking the form of a kernel prediction, but with the benefit of
nontrivial feature evolution incorporated into the trained kernel.
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Quadratic Models vs. Deep Learning

» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku <5011A/fjf Yizar + 0(62) ’

a1,00€A

1 .
k?i;éléz(e*) = k5152 + 2 Z (N51525é1 + /1’5251&1)ka1a2)/i;542 .
1,00 A
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Quadratic Models vs. Deep Learning
» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku <5011A/fjf Yizar + 0(62) ’

a1,00€A
1 ~x
k?i;&&z(e*) = k55, + 2 Z (1618261 + Hor0161) K™ Visaiy -
1,00 A

» MLPs at large-but-finite width are cubic models

i(xs: 0 Z Wiio;(x5) +f Z i Wi i (%5)

11 J2=0
Z VVijl VV"jz VVI'J'3 \Ujljzja (Xﬁ)
Jl J2,/3=0
> The amount of representation learning is set by the
depth-to-width ratio, € = % with the depth L and width n.

» The ¢j(xs), Vjjp(xs), Vjijrjs(Xs) are random.
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Some Takeaways

» The deep learning framework makes it easy to define and train
nonlinear models, letting us approximate functions that are
often easy for humans to do — is there a cat in that image? —
but hard for humans to program: a.k.a Al.

» These nonlinear models are much richer than classical
statistical models such as linear regression.

Thank You!
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