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Machine Learning Models

zi (x ; θ) = zi ;δ(θ = 0) +
P∑
µ=1

θµ
dzi ;δ
dθµ
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I x is an input, θ are the parameters
I i = 1, . . . , nout is a vectorial index
I δ ∈ D is a sample index
I generic models are nonlinear in θ
I linear models are special
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Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well
understood type of curve fitting.

(ii) In nonlinear models the effective features evolve over the
course of training:

φ(x)→ φ(x ; θ?) ,

allowing for nontrivial representation learning.
(iii) For nonlinear models, the solution depends on the method

of training and optimization.

Neural networks are nonlinear models with these two properties!
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A Familiar Example

The simplest model is a (generalized) linear model:

zi (θ) = Wi01 + Wi1x + Wi2x2 + Wi3x3
n0∑

j=1

I Linear in both the parameters θ = {bi ,Wij}.
I Here, we’ve subsumed the bias vector into the weight matrix

by setting φ0(x) ≡ 1 and Wi0 ≡ bi .
I Fixed basis of feature functions φj(x) lets it approximate

functions that are nonlinear transformations of the input.
I (e.g. for a 1-dimensional function we might pick a basis
φj(x) = {1, x , x2, x3} and fit cubic curves.)

4 / 20



Linear Regression
Supervised learning with a linear model is linear regression

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wijφj(xα̃)

2

,

where yi ≡ fi (x) is an observed true output or label.

I We could solve by direct optimization:

0 = dLA
dWij

∣∣∣∣∣
W =W ?

.

I We could solve by gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.
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The Kernel

Let us introduce a new ND × ND-dimensional symmetric matrix:

kδ1δ2 ≡ k(xδ1 , xδ2) ≡
nf∑

j=0
φj(xδ1)φj(xδ2) .

As an inner product of features, the kernel kδ1δ2 is a measure of
similarity between two inputs xi ;δ1 and xi ;δ2 in feature space.

We’ll also denote an NA-by-NA-dimensional submatrix of the
kernel evaluated on the training set as k̃α̃1α̃2 with a tilde. This lets
us write its inverse as k̃ α̃1α̃2 , which satisfies∑

α̃2∈A
k̃ α̃1α̃2 k̃α̃2α̃3 = δα̃1

α̃3
.
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Linear Models and Kernel Methods

Two forms of a solution for a linear model:

I parameter space – linear regression

zi
(
xβ̇; θ?

)
=

nf∑
j=0

W ?
ij φj(xβ̇)

I sample space – kernel methods

zi
(
xβ̇; θ?

)
=

∑
α̃1,α̃2∈A

kβ̇α̃1
k̃ α̃1α̃2yi ;α̃2 .

Features of this model, expressed as φj(x) or kδ1δ2 , are fixed.
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Nonlinear Models

To go beyond the linear paradigm, let’s slightly deform it to get a
nonlinear model, specifically a quadratic model:

zi ;δ(θ) =
nf∑

j=0
Wijφj(xδ) + ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)
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2

nf∑
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Wij1Wij2ψj1j2(xδ)

I It’s nonlinear because it’s quadratic in the weights: Wij1Wij2 .
I ε� 1 is small parameter that controls the size of the

deformation.
I We’ve introduced (nf + 1)(nf + 2)/2 meta feature

functions, ψj1j2(x), with two feature indices.
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Quadratic Models

To familiarize ourselves with this model, let’s make a small change
in the model parameters Wij →Wij + dWij :

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij

φj(xδ) + ε
nf∑

j1=0
Wij1ψj1j(xδ)


+ ε

2

nf∑
j1,j2=0

dWij1dWij2ψj1j2(xδ).

Let us make a shorthand for the quantity in the square bracket,

φE
ij (xδ; θ) ≡ dzi (xδ; θ)

dWij
= φj(xδ) + ε

nf∑
k=0

Wikψkj(xδ) ,

which is an effective feature function.
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Effective Feature Learning
The quadratic model zi (xδ; θ) behaves effectively as if it has a
parameter-dependent feature function, φE

ij (xδ; θ).

I The φE
ij (xδ; θ) learns with update dWik :

φE
ij (xδ; θ + dθ) = φE

ij (xδ; θ) + ε
nf∑

k=0
dWik ψkj(xδ) .

I For comparison, for the linear model we’d have:

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij φj(xδ)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model’s output evolves in a more complicated nonlinear way.
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Quadratic Regression

Supervised learning a quadratic model doesn’t have a particular
name, but if it did, we’d all probably agree that its name should be
quadratic regression:

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wij φj(xα̃)− ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xα̃)

2

.
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The loss is now quartic in the parameters, and in general

0 = dLA
dWij
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W =W ?

,

doesn’t give analytical solutions or a tractable practical method.
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Quadratic Regression

Supervised learning a quadratic model doesn’t have a particular
name, but if it did, we’d all probably agree that its name should be
quadratic regression:

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wij φj(xα̃)− ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xα̃)

2

.

The loss is now quartic in the parameters, but we can optimize with
gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.

This will find a minimum in practice.
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Quadratic Model Gradient Descent Dynamics
The weights will update as

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

= Wij(t)− η
∑
α̃

φE
ij;α̃(t) (zi ;α̃(t)− yi ;α̃) .

While the model and effective features update as

zi ;δ(t + 1) =zi ;δ(t) +
∑

j
dWij(t)φE

ij;δ(t)

+ ε

2
∑
j1,j2

dWij1(t) dWij2(t)ψj1j2(xδ),

φE
ij;δ(t + 1) =φE

ij;δ(t) + ε
nf∑

k=0
dWik(t)ψkj(xδ).
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Aside: Meta Kernel

Useful to define a meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

13 / 20



Aside: Meta Kernel

Useful to define a meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

13 / 20



Aside: Meta Kernel

Useful to define a meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

13 / 20



Aside: Meta Kernel

Useful to define a meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

13 / 20



Solution

zi ;β̇(∞)

=
∑

α̃1,α̃2∈A
kβ̇α̃1

k̃ α̃1α̃2yi ;α̃2

+
∑

α̃1,...,α̃4∈A

µα̃1β̇α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃1α̃6α̃2

Z α̃1α̃2α̃3α̃4
A yi ;α̃3 yi ;α̃4

+
∑

α̃1,...,α̃4∈A

µβ̇α̃1α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃6α̃1α̃2

Z α̃1α̃2α̃3α̃4
B yi ;α̃3 yi ;α̃4

where the algorithm projectors are given by

Z α̃1α̃2α̃3α̃4
A ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II ,

Z α̃1α̃2α̃3α̃4
B ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II + η

2 X α̃1α̃2α̃3α̃4
II .
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Here, an inverting tensor is implicitly defined:

δα̃1
α̃5
δα̃2
α̃6

=
∑

α̃3,α̃4∈A
X α̃1α̃2α̃3α̃4

II
1
η

[
δα̃3α̃5δα̃4α̃6 − (δα̃3α̃5 − ηk̃α̃3α̃5)(δα̃4α̃6 − ηk̃α̃4α̃6)

]
=

∑
α̃3,α̃4∈A

X α̃1α̃2α̃3α̃4
II

(
k̃α̃3α̃5δα̃4α̃6 + δα̃3α̃5 k̃α̃4α̃6 − ηk̃α̃3α̃5 k̃α̃4α̃6

)
.
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Solution

zi ;β̇(∞)

=
∑

α̃1,α̃2∈A
kβ̇α̃1

k̃ α̃1α̃2yi ;α̃2

+
∑

α̃1,...,α̃4∈A

µα̃1β̇α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃1α̃6α̃2

Z α̃1α̃2α̃3α̃4
A yi ;α̃3 yi ;α̃4

+
∑

α̃1,...,α̃4∈A

µβ̇α̃1α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃6α̃1α̃2

Z α̃1α̃2α̃3α̃4
B yi ;α̃3 yi ;α̃4

where the algorithm projectors are given by

Z α̃1α̃2α̃3α̃4
A ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II ,

Z α̃1α̃2α̃3α̃4
B ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II + η

2 X α̃1α̃2α̃3α̃4
II .
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.
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II

(
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)
= δα̃1

α̃5
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Representation Learning
For simplicity, let’s pick the direct optimization solution:

Z α̃1α̃2α̃3α̃4
A = 0, Z α̃1α̃2α̃3α̃4

B = 1
2 k̃ α̃1α̃3 k̃ α̃2α̃4 .

Then, we can define a trained kernel whose functional form
effectively depends on the data:

k]ii ;δ1δ2
(θ?) ≡ kδ1δ2 + 1

2
∑

α̃1,α̃2∈A
(µδ1δ2α̃1 +µδ2δ1α̃1)k̃ α̃1α̃2yi ;α̃2 +O

(
ε2
)
.

Now the nearly-kernel prediction formula can be compressed,

zi (xβ̇; θ?) =
∑

α̃1,α̃2∈A
k]ii ;β̇α̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

taking the form of a kernel prediction, but with the benefit of
nontrivial feature evolution incorporated into the trained kernel.
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Quadratic Models vs. Deep Learning
I Quadratic models are minimal models of feature learning:

zi (xδ; θ?) =
∑

α̃1,α̃2∈A
k]ii ;δα̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

k]ii ;δ1δ2
(θ?) ≡ kδ1δ2 + 1

2
∑

α̃1,α̃2∈A
(µδ1δ2α̃1 + µδ2δ1α̃1)k̃ α̃1α̃2yi ;α̃2 .

I MLPs at large-but-finite width are cubic models

zi (xδ; θ) =
nf∑

j=0
Wijφj(xδ) + 1

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

+ 1
6

nf∑
j1,j2,j3=0

Wij1Wij2Wij3Ψj1j2j3(xδ)

I The amount of representation learning is set by the
depth-to-width ratio, ε ≡ L

n , with the depth L and width n.
I The φj(xδ), ψj1j2(xδ), Ψj1j2j3(xδ) are random.
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Some Takeaways

I The deep learning framework makes it easy to define and train
nonlinear models, letting us approximate functions that are
often easy for humans to do – is there a cat in that image? –
but hard for humans to program: a.k.a AI.

I These nonlinear models are much richer than classical
statistical models such as linear regression.

Thank You!
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