A Minimal Model of Representation Learning

Dan Roberts

MIT \& Salesforce

December 14, 2021

Based on The Principles of Deep Learning Theory w/ Yaida and Hanin, 2106.10165, to be published by Cambridge University Press in 2022.

Machine Learning Models
$z_{i}(x ; \theta)$

Machine Learning Models

$z_{i}(x ; \theta)$

- x is an input, θ are the parameters

Machine Learning Models

$z_{i}(x ; \theta)$

- x is an input, θ are the parameters
- $i=1, \ldots, n_{\text {out }}$ is a vectorial index

Machine Learning Models

$z_{i}\left(x_{\delta} ; \theta\right)$

- x is an input, θ are the parameters
- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index

Machine Learning Models

$z_{i ; \delta}(\theta)$

- x is an input, θ are the parameters
- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index

Machine Learning Models

$$
\begin{aligned}
z_{i ; \delta}(\theta)=z_{i ; \delta}(\theta=0) & +\left.\sum_{\mu=1}^{P} \theta_{\mu} \frac{d z_{i ; \delta}}{d \theta_{\mu}}\right|_{\theta=0}+\left.\frac{1}{2} \sum_{\mu_{1}, \mu_{2}=1}^{P} \theta_{\mu_{1}} \theta_{\mu_{2}} \frac{d^{2} z_{i ; \delta}}{d \theta_{\mu_{1}} d \theta_{\mu_{2}}}\right|_{\theta=0} \\
& +\left.\frac{1}{3!} \sum_{\mu_{1}, \mu_{2}, \mu_{3}=1}^{P} \theta_{\mu_{1}} \theta_{\mu_{2}} \theta_{\mu_{3}} \frac{d^{3} z_{i ; \delta}}{d \theta_{\mu_{1}} d \theta_{\mu_{2}} d \theta_{\mu_{3}}}\right|_{\theta=0}+\ldots
\end{aligned}
$$

- x is an input, θ are the parameters
- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index
- generic models are nonlinear in θ

Machine Learning Models

$$
z_{i ; \delta}(\theta)=z_{i ; \delta}(\theta=0)+\left.\sum_{\mu=1}^{P} \theta_{\mu} \frac{d z_{i ; \delta}}{d \theta_{\mu}}\right|_{\theta=0}
$$

- x is an input, θ are the parameters
- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index
- generic models are nonlinear in θ
- linear models are special

Why Study Nonlinear Models?

Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well understood type of curve fitting.

Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well understood type of curve fitting.
(ii) In nonlinear models the effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right),
$$

allowing for nontrivial representation learning.

Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well understood type of curve fitting.
(ii) In nonlinear models the effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right),
$$

allowing for nontrivial representation learning.
(iii) For nonlinear models, the solution depends on the method of training and optimization.

Why Study Nonlinear Models?

(i) linear regression goes back to Legendre and Gauss, and is a well understood type of curve fitting.
(ii) In nonlinear models the effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right),
$$

allowing for nontrivial representation learning.
(iii) For nonlinear models, the solution depends on the method of training and optimization.

Neural networks are nonlinear models with these two properties!

A Familiar Example

The simplest model is a (generalized) linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

A Familiar Example

The simplest model is a (generalized) linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$.

A Familiar Example

The simplest model is a (generalized) linear model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$.
- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.

A Familiar Example

The simplest model is a (generalized) linear model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$.
- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.
- Fixed basis of feature functions $\phi_{j}(x)$ lets it approximate functions that are nonlinear transformations of the input.

A Familiar Example

The simplest model is a (generalized) linear model:

$$
z_{i}(\theta)=W_{i 0} 1+W_{i 1} x+W_{i 2} x^{2}+W_{i 3} x^{3}
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$.
- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.
- Fixed basis of feature functions $\phi_{j}(x)$ lets it approximate functions that are nonlinear transformations of the input.
- (e.g. for a 1-dimensional function we might pick a basis $\phi_{j}(x)=\left\{1, x, x^{2}, x^{3}\right\}$ and fit cubic curves.)

Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

- We could solve by direct optimization:

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

- We could solve by direct optimization:

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

- We could solve by gradient descent:

$$
W_{i j}(t+1)=W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)}
$$

The Kernel

Let us introduce a new $N_{\mathcal{D}} \times N_{\mathcal{D}}$-dimensional symmetric matrix:

$$
k_{\delta_{1} \delta_{2}} \equiv k\left(x_{\delta_{1}}, x_{\delta_{2}}\right) \equiv \sum_{j=0}^{n_{f}} \phi_{j}\left(x_{\delta_{1}}\right) \phi_{j}\left(x_{\delta_{2}}\right) .
$$

As an inner product of features, the kernel $k_{\delta_{1} \delta_{2}}$ is a measure of similarity between two inputs $x_{i ; \delta_{1}}$ and $x_{i ; \delta_{2}}$ in feature space.

We'll also denote an $N_{\mathcal{A}}$-by- $N_{\mathcal{A}}$-dimensional submatrix of the kernel evaluated on the training set as $\widetilde{k}_{\tilde{\alpha}_{1} \tilde{\alpha}_{2}}$ with a tilde. This lets us write its inverse as $\widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}}$, which satisfies

$$
\sum_{\tilde{\alpha}_{2} \in \mathcal{A}} \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} \tilde{k}_{\tilde{\alpha}_{2} \tilde{\alpha}_{3}}=\delta_{\tilde{\alpha}_{3}}^{\tilde{\alpha}_{1}}
$$

Linear Models and Kernel Methods

Two forms of a solution for a linear model:

- parameter space - linear regression

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)
$$

- sample space - kernel methods

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
$$

Linear Models and Kernel Methods

Two forms of a solution for a linear model:

- parameter space - linear regression

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)
$$

- sample space - kernel methods

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
$$

Features of this model, expressed as $\phi_{j}(x)$ or $k_{\delta_{1} \delta_{2}}$, are fixed.

Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.

Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.
- $\epsilon \ll 1$ is small parameter that controls the size of the deformation.

Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.
- $\epsilon \ll 1$ is small parameter that controls the size of the deformation.
- We've introduced $\left(n_{f}+1\right)\left(n_{f}+2\right) / 2$ meta feature functions, $\psi_{j_{1} j_{2}}(x)$, with two feature indices.

Quadratic Models

To familiarize ourselves with this model, let's make a small change in the model parameters $W_{i j} \rightarrow W_{i j}+d W_{i j}$:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right) & +\sum_{j=0}^{n_{f}} d W_{i j}\left[\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{j_{1}=0}^{n_{f}} W_{i j_{1}} \psi_{j_{1} j}\left(x_{\delta}\right)\right] \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} d W_{i j_{1}} d W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
\end{aligned}
$$

Quadratic Models

To familiarize ourselves with this model, let's make a small change in the model parameters $W_{i j} \rightarrow W_{i j}+d W_{i j}$:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right) & +\sum_{j=0}^{n_{f}} d W_{i j}\left[\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{j_{1}=0}^{n_{f}} W_{i j_{1}} \psi_{j_{1} j}\left(x_{\delta}\right)\right] \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} d W_{i j_{1}} d W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
\end{aligned}
$$

Let us make a shorthand for the quantity in the square bracket,

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right) \equiv \frac{d z_{i}\left(x_{\delta} ; \theta\right)}{d W_{i j}}=\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{k=0}^{n_{f}} W_{i k} \psi_{k j}\left(x_{\delta}\right),
$$

which is an effective feature function.

Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$.

Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$:

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$:

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

- For comparison, for the linear model we'd have:

$$
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right)+\sum_{j=0}^{n_{f}} d W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$:

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

- For comparison, for the linear model we'd have:

$$
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right)+\sum_{j=0}^{n_{f}} d W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

Thus quadratic model has a hierarchical structure, where the features evolve as if they are described by a linear model and the model's output evolves in a more complicated nonlinear way.

Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:
$\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2}$.

Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2} .
$$

The loss is now quartic in the parameters, and in general

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

doesn't give analytical solutions or a tractable practical method.

Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2} .
$$

The loss is now quartic in the parameters, but we can optimize with gradient descent:

$$
W_{i j}(t+1)=W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)}
$$

This will find a minimum in practice.

Quadratic Model Gradient Descent Dynamics

The weights will update as

$$
\begin{aligned}
W_{i j}(t+1) & =W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)} \\
& =W_{i j}(t)-\eta \sum_{\tilde{\alpha}} \phi_{i j ; \tilde{\alpha}}^{\mathrm{E}}(t)\left(z_{i ; \tilde{\alpha}}(t)-y_{i ; \tilde{\alpha}}\right) .
\end{aligned}
$$

While the model and effective features update as

$$
\begin{aligned}
& z_{i ; \delta}(t+1)=z_{i ; \delta}(t)+\sum_{j} d W_{i j}(t) \phi_{i j ; \delta}^{\mathrm{E}}(t) \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}} d W_{i j_{1}}(t) d W_{i j_{2}}(t) \psi_{j_{1} j_{2}}\left(x_{\delta}\right), \\
& \phi_{i j ; \delta}^{\mathrm{E}}(t+1)=\phi_{i j ; \delta}^{\mathrm{E}}(t)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k}(t) \psi_{k j}\left(x_{\delta}\right) .
\end{aligned}
$$

Aside: Meta Kernel

Useful to define a meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

Aside: Meta Kernel

Useful to define a meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.

Aside: Meta Kernel

Useful to define a meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.
- For a fixed input $x_{\delta_{0}}, \mu_{\delta_{0} \delta_{1} \delta_{2}}$ computes a different feature-space inner product between the two inputs, $x_{\delta_{1}} \& x_{\delta_{2}}$.

Aside: Meta Kernel

Useful to define a meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.
- For a fixed input $x_{\delta_{0}}, \mu_{\delta_{0} \delta_{1} \delta_{2}}$ computes a different feature-space inner product between the two inputs, $x_{\delta_{1}} \& x_{\delta_{2}}$.
- Due to the inclusion of ϵ into the definition of $\mu_{\delta_{0} \delta_{1} \delta_{2}}$, we should think of it as being parametrically small too.

Solution

$$
\begin{aligned}
& z_{i ; \dot{\beta}}(\infty) \\
= & \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\tilde{\alpha}_{1} \dot{\beta} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{1} \tilde{\alpha}_{6} \tilde{\alpha}_{2}}\right] Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\dot{\beta} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{6} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}\right] Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}}
\end{aligned}
$$

where the algorithm projectors are given by

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \\
& Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\mathrm{\alpha}}^{2}} \tilde{\alpha}^{\tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}+\frac{\eta}{2} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}
\end{aligned}
$$

Here, an inverting tensor is implicitly defined:

$$
\begin{aligned}
& \delta_{\tilde{\alpha}_{5}}^{\tilde{\alpha}_{1}} \delta_{\tilde{\alpha}_{6}}^{\tilde{\alpha}_{2}} \\
= & \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{\text {II }}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \frac{1}{\eta}\left[\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\left(\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}}-\eta \widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}}\right)\left(\delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\eta \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)\right] \\
= & \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{I I}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}\left(\widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}+\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\eta \widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)
\end{aligned}
$$

Solution

$$
\begin{aligned}
& z_{i ; \dot{\beta}}(\infty) \\
= & \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\tilde{\alpha}_{1} \dot{\beta} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{1} \tilde{\alpha}_{6} \tilde{\alpha}_{2}}\right] Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\dot{\beta} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{6} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}\right] Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}}
\end{aligned}
$$

where the algorithm projectors are given by

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \\
& Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\mathrm{\alpha}}^{2}} \tilde{\alpha}^{\tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}+\frac{\eta}{2} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}
\end{aligned}
$$

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

- If we'd optimized by direct optimization, we'd have found:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}
$$

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

- If we'd optimized by direct optimization, we'd have found:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}} ~}
$$

- In the ODE limit, we get different predictions

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}, \\
& \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{I I}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}\left(\tilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}+\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \tilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)=\delta_{\tilde{\alpha}_{5}}^{\tilde{\alpha}_{1}} \delta_{\tilde{\alpha}_{6}}^{\tilde{\alpha}_{2}},
\end{aligned}
$$

Representation Learning

For simplicity, let's pick the direct optimization solution:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}} .}
$$

Representation Learning

For simplicity, let's pick the direct optimization solution:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}} .
$$

Then, we can define a trained kernel whose functional form effectively depends on the data:
$k_{i ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right)$.

Representation Learning

For simplicity, let's pick the direct optimization solution:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}} .}
$$

Then, we can define a trained kernel whose functional form effectively depends on the data:
$k_{i ; ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right)$.

Now the nearly-kernel prediction formula can be compressed,

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \beta}^{\sharp} \widetilde{\beta}_{\tilde{\alpha}_{1}}^{k_{i i}^{\tilde{a}_{1}} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right),
$$

taking the form of a kernel prediction, but with the benefit of nontrivial feature evolution incorporated into the trained kernel.

Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{\mu}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) & \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
\end{aligned}
$$

Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp}{\widetilde{k^{\sharp}}}_{i i}^{\tilde{\#}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) & \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp}{\widetilde{k^{\sharp}}}_{i i}^{\tilde{\#}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) & \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

- The amount of representation learning is set by the depth-to-width ratio, $\epsilon \equiv \frac{L}{n}$, with the depth L and width n.

Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp}{\widetilde{k^{\sharp}}}_{i i}^{\tilde{a}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp}\left(\theta^{\star}\right) & \equiv k_{\delta_{1} \delta_{2}}+\frac{1}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

- The amount of representation learning is set by the depth-to-width ratio, $\epsilon \equiv \frac{L}{n}$, with the depth L and width n.
- The $\phi_{j}\left(x_{\delta}\right), \psi_{j_{1} j_{2}}\left(x_{\delta}\right), \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)$ are random.

Some Takeaways

- The deep learning framework makes it easy to define and train nonlinear models, letting us approximate functions that are often easy for humans to do - is there a cat in that image? but hard for humans to program: a.k.a AI.
- These nonlinear models are much richer than classical statistical models such as linear regression.

Thank You!

