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targeting ML labs, start Fall 2022



Connecting @ Physics / ML Interface

NSF AI Institute for Artificial Intelligence 
and Fundamental Interactions (IAIFI) Physics Meets ML

one of five inaugural NSF AI research institutes, this 
one at the interface with physics! 

MIT, Northeastern, Harvard, Tufts.

ML for physics / math discoveries?
Can physics / math help ML?

Sign up for our mailing list: www.iaifi.org.
Spring colloquia to be announced soon!

Summer school in 2022!

virtual seminar series, “continuation” of 2019 
meeting at Microsoft Research.

Bi-weekly seminars from physicists and CS, 
academia and industry.

Organizers: Bahri (Google), Krippendorf 
(LMU Munich), J.H., Paganini (DeepMind), 
Ruehle (CERN), Shiu (Madison), Yang (MSR)

Sign up at www.physicsmeetsml.org.

Feel free to reach out!

e-mail: jhh@neu.edu
Twitter: @jhhalverson
web: www.jhhalverson.com

ML for Math: 
e.g. “Learning to Unknot”: 2010.16263

ML for Strings:
e.g. “Statistical Predictions in String Theory
and Deep Generative Models”: 2001.00555

ML for QM + CM:
2112.00723 “Infinite Neural Network Quantum States”

NN / Field Theory:
2008.08601 “Neural Networks and Quantum Field Theory”
2106.00694 “Symmetry-via-Duality”

http://www.iaifi.org
http://www.physicsmeetsml.org
mailto:jhh@neu.edu
http://www.jhhalverson.com


Advance physics knowledge—from the smallest building blocks of nature to the 
largest structures in the universe—and galvanize AI research innovation

NSF AI Institute for Artificial Intelligence and 
Fundamental Interactions (IAIFI /aɪ-faɪ/)

@iaifi-newsiaifi-management@mit.edu

https://iaifi.org
IAIFI Postdoctoral Fellowship 

http://www.twitter.com/iaifi_news
mailto:iaifi-management@mit.edu
https://iaifi.org
https://iaifi.org/fellows


Finite-N Literature: Field Theory Ideas for ML
● [Dyer, Gur-Ari] 1909.11304 Asymptotics of Wide Networks from Feynman Diagrams

● [Yaida] 1910.00019 Non-Gaussian processes and neural networks at finite widths

● [J.H., Maiti, Stoner] 2008.08601 Neural Networks and Quantum Field Theory

● [Bachtis, Aarts, Lucini] 2102.09449 Quantum field-theoretic machine learning

● [Zavatone-Veth, Pehlevan] 2104.11734 Exact marginal prior distributions of finite Bayesian neural networks

● [Maiti, Stoner, J.H.] 2106.00694 Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators

● [Roberts, Yaida, Hanin] 2106.10165 The Principles of Deep Learning Theory

● [Erdmenger, Grosvenor, Jefferson] 2107.06898 
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group

● [Erbin, Lahoche, Samary] 2108.01403 Nonperturbative renormalization for the neural network-QFT correspondence

● [Grosvenor, Jefferson] 2109.13247 The edge of chaos: quantum field theory and deep neural networks

if I missed you!
my sincere apologies,

please write me.



Finite-N Literature: Field Theory Ideas for ML
● [Dyer, Gur-Ari] 1909.11304 Asymptotics of Wide Networks from Feynman Diagrams

● [Yaida] 1910.00019 Non-Gaussian processes and neural networks at finite widths

● [J.H., Maiti, Stoner] 2008.08601 Neural Networks and Quantum Field Theory

● [Bachtis, Aarts, Lucini] 2102.09449 Quantum field-theoretic machine learning

● [Zavatone-Veth, Pehlevan] 2104.11734 Exact marginal prior distributions of finite Bayesian neural networks

● [Maiti, Stoner, J.H.] 2106.00694 Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators

● [Roberts, Yaida, Hanin] 2106.10165 The Principles of Deep Learning Theory

● [Erdmenger, Grosvenor, Jefferson] 2107.06898 
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group

● [Erbin, Lahoche, Samary] 2108.01403 Nonperturbative renormalization for the neural network-QFT correspondence

● [Grosvenor, Jefferson] 2109.13247 The edge of chaos: quantum field theory and deep neural networks

this conference:
numerous talks on

this subject! 

See talks: Maiti, Roberts, Erbin.



Q: what takes the place of an action?
Q: design principles? symmetry?

Q: interactions, from where?

Q: when can we rotate to Lorentzian signature, get QFT defined by NNs?

Goal Here: NN Approach to QFT



Outline

● Building Quantum Fields out of Neurons

● Turning on Interactions: Break the Central Limit Theorem

● Engineering Symmetries + Euclidean Invariance

● Neural Network QFTs: 

● Examples: a Gaussian NN Quantum Field Theory and a large-N duality



Building Quantum Fields Out of Neurons



Fields from Neurons
● real scalar = sum of N

generally non-Gaussian neurons hi.

● neurons identically distributed,
not necessarily independently distributed.

● a priori, don’t know action of fields or neurons.

For simplicity + scaling:

Key Point:
randomness of fields from construction, 

not the action.

theory def’d by architecture, 
not (necessarily) a Lagrangian.



Correlation Functions: In Parameter Space

● det’d diagonal neuron 2-pt function.
● more general: field correlators function of 

neuron correlators

● notice: N-scaling of variance chosen wisely.
● identical neurons allows no sum on i.

Field and Neuron Correlators: Two-Point Function:

● exact expressions in parameter space.
● doesn’t require knowledge of

● sometimes can evaluate exactly! see extras.
● can study / utilize, e.g. for symmetries, even

if you can’t do the integral. see Maiti’s talk.

method of computing: in GPs, 
“Computing with Infinite Networks” [Williams]
NeurIPS 1996



Turning on Interactions
Need non-Gaussianities?

Break the central limit theorem.



Reminder: Free Theories from Central Limit Theorem

Drawn from Gaussian distribution on functions,
by Central Limit Theorem, when:

1) infinite sum of
2) independent random variables.

Of course: does not require Gaussian neurons hi.

Neural Network Gaussian Process (NNGP)

Key Point: of slide below is that 
NNGPs are everywhere.



Interactions from Breaking the CLT
● connected 4-pt function takes form:

● First term vanishes at infinite-N:

● Second term vanishes in independence limit:

where 

● Sometimes have parametric control over 
breaking of independence, use pert. thy.

Can still have symmetries. (See Maiti talk).

ML Lit: see [Yaida] [J.H., Maiti, Stoner] 
[Roberts, Yaida, Hanin] 

[Erbin, Lahoche, Samary]  and others
for related finite-N results.



Engineering Symmetries
Generally, but also Euclidean invariance.



from                                   
which ensures odd-point functions vanish.

Symmetries: The Basic Idea

● recall: computing corrs. in parameter space.

● demonstrate symmetries via param. space
study of correlators.

● existence or non-existence of symms. arises 
from parameter measures and densities.

Simple Example



Inheritance of Spacetime Symmetries
● fields from neurons hi.

● neurons themselves a complicated function 
g acting on an input layer lj.

● input layer invariance:
act on x, absorb into 𝜃l, transform El, 
demonstrate inv. of correlators.

● field / neuron ensembles invariant if:
1) input layer ensemble is invariant.
2) parameter constraint satisfied.

(idea: still leaves El invariant).

Key Point:
ensembles of fields and deep neurons

can inherit symmetries from input layer.



Euclidean Invariance
● want: Euclidean invariance, so we can get 

Lorentz invariance after continuation.

● left: a family of Euclidean-invariant
input layer architectures.

● left: demonstration of translation invariance.

● SO(d) invariance of l-ensemble follows 
if F(bi) and P(bi) are invariant .

Translation Invariance:

Key Point:
families of examples for both deep and 

shallow networks.



Neural Network Quantum Field Theories



Neural Network Quantum Field Theories
So far: ensembles of Euclidean fields from NNs.

Definition: a NN architecture induces a NN-QFT if 
it is the Wick-rotation of a unitary Lorentzian QFT.

Q: when is a Euclidean theory the 
Wick rotation of a Lorentzian QFT?

Osterwalder-Schrader Axioms: 
when do Euclidean correlators define a Wightman QFT?

Need to satisfy:

E0: Temperedness
E1: Euclidean covariance (just engineered)
E2: Reflection Positivity (rel. to unitarity)
E3: Permutation Symmetry (trivial for NNs)
E4: Cluster decomposition 

Relax E1 for NN-QFTs that are not Lorentz invariant?



Unitarity and Reflection Positivity

yields a constraint called Reflection Positivity
on Euclidean correlators.

RP gives a constraint on all Euclidean correlators.

Important for future work: general RP NNs.

Here: content ourselves to check 2-pt condition,
which ensures RP of any Gaussian process,
therefore NNGPs.

early lit: [Osterwalder, Schrader]
text: [Glimm, Jaffe]



Unitarity and Reflection Positivity: Power Spectrum Rep
● interested in Euclidean-invariant theories.

● 2-pt function T-invariant.
equiv: determined by power spectrum.

● Q: what is RP constraint on power spectrum?

Key points: 
1) any T-invt NN-QFT must satisfy.
2) for T-invt NNGP, this is sufficient for RP.

Two-point RP Rephrased:

Sufficient condition for RP: B positive,



Examples

A family of examples.

Specific examples: Gaussian NN-QFT and Large-N Duality



Single Layer Families of Examples
Thus far, we have:

Euclidean-invariant input layer ensemble ensures 
Euclidean invariant neuron ensemble, 
under parameter constraint.

One Euclidean invariant input layer is 

with P(bi) and F(bi) chosen to be invariant.

Single-layer family of examples: just take

i.e., scalar field is

Fully specified example: must choose P(bi) and F(bi) 



Neuron Correlators

● tunable power spectrum! via choice of F(bi) and P(bi)

● manifest translation invariance.
● SO(d) invariant for symmetric F(bi) and P(bi).

Two-point Function

Power Spectrum

Four-point Correlators



Specific Example #1: A Gaussian NN-QFT
● take gij = δij family, specify:

● power spectrum is:

● N → ∞ for Gaussianity. Key Point:

free scalar as a NN-QFT!



Specific Example #2: Another Gaussian NN-QFT
● take gij = δij family, d=1, specify:

● power spectrum is:

● N → ∞ for Gaussianity.
● RP from structure of 

Key Point:
used tunability of power spectrum to

get another Gaussian NN-QFT.



Specific Example #3: Large-N Duality

both architectures have

there dual theories in NNGP limit, N → ∞.

however, at finite-N, theories and 
symmetries are different!

extra slides: exact connected 4-pt functions.  

Cos-net:

Gauss-net:



Miscellany:
It’s interesting to think about classical configurations and

spontaneous symmetry breaking in this context.

See paper, I’m surely out of time.



Summary and Outlook



In Summary:

parameters ai. drawn iid as 

neuron hi has its own parameters.

Key points:

● fields w/ different origin of randomness,
from neuron construction, 
not distribution in path integral.

● non-Lagrangian.  often non-perturbative.     
[J.H., Maiti, Stoner] for Lagrangian modeling

● can satisfy Osterwalder-Schrader axioms,
give Lorentz-invariant, unitary theory.

● Interactions: break CLT!
i.e. from finite-N, or independence breaking.

● Important for future: theory of RP NNs.



Some Predictions
If built from many nearly-independent neurons, 

QFTs are nearly-Gaussian.
Of course, often see this in Nature.

Mixed field-neuron correlators to excite individual neurons?
Possibility: neurons not just kinematically inaccessible,

also statistically inaccessible.



Potential Use Case
Lattice field theory.

usual ML for lattice tackles sampling problem.

This is a fundamentally different construction
where sampling is easy, but action is unknown.

But we do have design principles!



Thanks!
Questions?

Or get in touch after:
e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

mailto:jhh@neu.edu
http://www.jhhalverson.com


Gauss-net and Cos-net 4-pt Functions

Gauss-net:

Cos-net:

A Key Point:
Gauss-net not T-invariant at Finite-N

Cos-net T-invariant a Finite-N.



Concrete Single-Layer Examples + 2-pt functions K:

Erf-net:

Gauss-net:

ReLU-net:


