
Explore with a small model



Model fails to train when scaled up

with the same hyperparameters
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WHAT DO THESE HAVE IN COMMON?

Manhattan Project Space Program
Large pretrained language/vision models

• Revolutionary achievements, paradigm shifts of their times

• Started races between nation-states

• Each empirical test is very expensive

• Require extensive theoretical calculation first before launching any empirical test

How to train large models reliably and optimally?
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“Transfer” = optimal hyperparameter remains stable with model size



Key Empirical Results
IWSLT14 De-En

WikiText-2

GPT-3 6.7BBERT



Theoretical Foundation
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𝜇Transfer in a Gist
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Any time during initialization or training:

1. Every (pre)activation vector should have Θ(1)-sized coordinates

2. Neural network output should be O(1)

3. All parameters should be updated as much as possible (in terms 
of scaling in width) without leading to divergence.

Desiderata for a Good Parametrization

Big 𝑂 or Θ suppress constants not 

dependent on width 𝑛, including 

input and output dim

• Given these desiderata, deriving 𝜇P ~= deriving the renormalizability of an effective field theory

• i.e. dimension analysis in width (compared to dimensional analysis in cutoff)



Note: focus on scaling with fan_in or fan_out; everything else is a tunable constant

Maximal Update Parametrization (𝜇P)



Empirical Evidence



2-hidden Layer MLP on CIFAR-10

log2 learning rate

Standard Parametrization Max Update Parametrization

log2 learning rate



Transformer on Wikitext-2

Standard Parametrization Max Update Parametrization

(XEnt Temp)



Step 1:
Parameterize BERT in 𝜇P

Step 2:
Tune hyperparameters on BERTSMALL via random search 

(256 combinations)

Step 3:
Copy the best hyperparameter combination to BERTBASE  

and BERTLARGE

✓ Tune once, use for a family of models

✓ Only run the large models once

Model # of 

params

Tuning cost 

(V100 yr)

Our 

Speedup

BERTSMALL 13M 1.8 1x

BERTBASE 110M 7.2 4x

BERTLARGE 336M 40 22x

Tuning BERT with 𝜇Transfer



OpenAI GPT-3 Family + 𝜇P

Hyperparameter Optimum is Stable Wider is Always Better Given the Same HPs



OpenAI GPT-3 6.7B + 𝜇Transfer

𝜇Transfer Outperforms the Heuristics Used in Brown et al. 2020

Total tuning compute budget is only 7% of training budget!!!



Connection with Physics



ANALOGY: LARGE MODEL TRAINING VS EFFECTIVE FIELD THEORY

Large Model Training

 Model size, or other compute HP like training time

 Non-compute HP, like learning rate

 Parametrization

 Trained model is a function of

 Compute HP: model size, training time, batch size, etc

 Non-compute HP: learning rate, weight decay, etc

 Model predicts next word of sentence/image label/etc

 Objective: find best HP for a given size to train model to 
reproduce human language and vision as closely as possible

 “Optimal” hyperparameters

Effective Field Theory

 Momentum/energy cutoff

 Coupling constants

 Theory skeleton (with unspecified coupling constants)

 A concrete effective field theory is a function of

 Momentum/energy cutoff

 Instantiations of “bare” coupling constants

 Theory predicts fundamental physics of our universe

 Objective: find coupling constants that reproduce experimental 
results as closely as possible

 “correct” coupling constants

Abbrev: HP = hyperparameter



NOW CONSIDER WIDTH AS THE MEASURE OF MODEL SIZE

Large Model Training

 Model width

 Infinite-width limit

 Hyperparameter transfer

𝐻𝑃’ = 𝐹(𝐻𝑃,𝑤𝑖𝑑𝑡ℎ,𝑤𝑖𝑑𝑡ℎ’)

 Parametrization admitting hyperparameter transfer

 Optimal HPs have infinite-width limits

Effective Field Theory

 Momentum/energy cutoff

 Ultraviolet limit

 Renormalization

𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔′ = 𝐹(𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔, 𝑐𝑢𝑡𝑜𝑓𝑓, 𝑐𝑢𝑡𝑜𝑓𝑓′)

 Renormalizable theory

 “physical” coupling constants have ultraviolet limits

Abbrev: HP = hyperparameter



NOW CONSIDER WIDTH AS THE MEASURE OF MODEL SIZE

Large Model Training

 Goal:

 Train large models reliably and optimally using 
parametrizations admitting hyperparameter transfer

 Example

 Parametrization: Maximal Update Parametrization (𝜇P)

 Infinite-width limit: the feature learning limit (aka 𝜇-limit)

 Counterexample

 Parametrization: Neural Tangent (NT) parametrization

 Infinite-width limit: Neural Tangent Kernel (NTK) limit

 Failure: does not transfer optimal hyperparameters

Effective Field Theory

 Goal (?):

 Come up with theory that describes nature at any energy cutoff

 Example

 Theory: QCD

 Ultraviolet limit: asymptotic freedom

 Counterexample

 Theory: classical electromagnetism

 Ultraviolet limit: itself (?)

 Failure: ultraviolet catastrophe



OPEN QUESTIONS

 𝜇P solves the transfer problem for width in a principled way. Can we do it for all other compute hyperparameters?

 Naïve transfer seems to work OK empirically, but as we go to larger scales, likely they will break down

 Analogy in physics: we have renormalizable QCD but are looking for a renormalizable theory unifying all fundamental forces

 How can techniques from physics, like effective field theory, help?



WHY DOES ONE CARE ABOUT HYPERPARAMETER TRANSFER?

 High impact

 Large model training is a modern space race

 Highly heated race between large corporations and nation-states

 These large neural networks are the closest we have to human intelligence

 They can significantly reshape everyone’s lives in the upcoming years

 High leverage (for theorists)

 Each model training run can cost $10+ million dollars

 so theorists are absolutely crucial here to provide guidance, as empirical approaches are absurdly expensive

 Distillation of theory

 The current field of theoretical deep learning has a lot of “spurious explanations” with no predictive power

 The high stakes mean that these fluff theories will be weeded out quickly

 Akin to testing physical predictions using data from LHC

 In particular, the correct limits of neural networks should necessarily admit HP transfer

 So anything based on NTK should not be correct
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