Machine learning the Kitaev Honeycomb model

Babak Haghighat

Tsinghua University

Based on work with: M. Noormandipoor and Y. Sun.

Outline

- Introduction
- 2 The Kitaev Honeycomb model
 - Majorana fermion realization
 - Emerging lattice gauge theory
 - Ising Anyons
- Solving the Honeycomb model in spin basis
 - RBM representation
 - Conformal block representation
- Conclusions

Non-Abelian Phases of Matter

- Fractional Quantum Hall Effect with filling fraction $\nu=\frac{5}{2}$ was observed experimentally through measurement of *electric* Hall conductivity by R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English [1987].
- Theoretical explanation in terms of a Non-Abelian phase of matter was given by G. Moore and N. Read [1991]. But other explanations in terms of Abelian phases of matter were also proposed and were consistent with experimental results.
- This situation changed with the recent experimental measurement of thermal Hall conductivity at $\nu=\frac{5}{2}$ by M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y. Oreg and A. Stern [2018] .
 - ⇒ Experimental confirmation of Non-Abelian phases of matter in nature!
- Kitaev Honeycomb model Kitaev [2006] provides a spin lattice realization of a Non-Abelian phase of matter ⇒ worth studying further in these exciting times!

Outline

- Introduction
- 2 The Kitaev Honeycomb model
 - Majorana fermion realization
 - Emerging lattice gauge theory
 - Ising Anyons
- Solving the Honeycomb model in spin basis
 - RBM representation
 - Conformal block representation
- 4 Conclusions

Kitaev Honeycomb model

The Kitaev model is a spin lattice model on a honeycomb lattice:

(a) Honeycomb lattice

(b) Periodic boundary conditions

$$\mathbf{a}_1 = \sqrt{3} a \mathbf{e}_x$$
 & $\mathbf{a}_2 = \frac{\sqrt{3}}{2} a (\mathbf{e}_x, \sqrt{3} \mathbf{e}_y)$

with Hamiltonian

$$H = -\sum_{\text{x links}} \sigma_i^{\text{x}} \sigma_j^{\text{x}} - \sum_{\text{y links}} \sigma_i^{\text{y}} \sigma_j^{\text{y}} - \sum_{\text{z links}} \sigma_i^{\text{z}} \sigma_j^{\text{z}} - K \sum_{(i,j,k)} \sigma_i^{\text{x}} \sigma_j^{\text{y}} \sigma_k^{\text{z}}$$

Kitaev's solution: realize spin 1/2 particles at each site i by two complex spinless fermionic modes $a_{1,i}$ and $a_{2,i}$

$$|\uparrow\rangle = |00\rangle, \quad |\downarrow\rangle = |11\rangle$$

with $a_1|00\rangle = a_2|00\rangle = 0$ and $|11\rangle = a_1^{\dagger}a_2^{\dagger}|00\rangle$. This representation is faithful if one eliminates states with only a single fermionic mode. This can be done by the projector

$$D_i|\Psi\rangle=|\Psi\rangle,$$

where

$$D_i = (1 - 2a_{a,i}^{\dagger}a_{1,i})(1 - 2a_{2,i}^{\dagger}a_{2,i}).$$

Defining 'real' and 'imaginary' modes

$$c_i = a_{1,i} + a_{1,i}^{\dagger}, \quad b_i^{\mathsf{x}} = i(a_{1,i}^{\dagger} - a_{1,i}), \quad b_i^{\mathsf{y}} = a_{2,i} + a_{2,i}^{\dagger}, \quad b_i^{\mathsf{z}} = i(a_{2,i}^{\dagger} - a_{2,i}),$$

one can realize Pauli matrices by defining

$$\sigma_i^{\alpha} = ib_i^{\alpha}c_i$$
 for $\alpha = x, y, z$

Employing this representation the Hamiltonian interactions become

$$\sigma_i^\alpha\sigma_j^\alpha=-i\hat{u}_{ij}c_ic_j\quad\text{ and }\quad\sigma_i^x\sigma_j^y\sigma_k^z=-i\hat{u}_{ik}\hat{u}_{jk}D_kc_ic_j,$$

where one defines the link operators

$$\hat{u}_{ij} = ib_i^{\alpha}b_j^{\alpha}, \quad \alpha = x, y, z$$

depending on the type of link (ij) as shown in the figure. The \hat{u}_{ij} have the following properties:

$$\hat{u}_{ij}=-\hat{u}_{ji},\quad \hat{u}_{ij}^2=1,\quad \hat{u}_{ij}^\dagger=\hat{u}_{ij}$$

The Hamiltonian can then be rewritten as

$$H = \frac{i}{4} \sum_{i,j} \hat{A}_{ij} c_i c_j, \quad \hat{A}_{ij} = 2\hat{u}_{ij} + 2K \sum_k \hat{u}_{ik} \hat{u}_{jk}$$

Emerging lattice gauge theory

First note that

$$[H,D_i]=0,$$

 \longrightarrow diagonalising Hamiltonian is compatible with restricting to physical subspace $D_i = +1$ for all i:

$$H|\Psi\rangle = E|\Psi\rangle \quad \text{and} \quad D_i|\Psi\rangle = |\Psi\rangle$$

Consider now the plaquette operators

$$\hat{w}_p = \sigma_1^x \sigma_2^y \sigma_3^z \sigma_4^x \sigma_5^y \sigma_6^z = \prod_{i,j \in p} \hat{u}_{ij}$$

These operators have eigenvalues ± 1 and commute with the Hamiltonian and with the D_i operators:

$$[\hat{w}_{p}, H] = 0$$
 and $[\hat{w}_{p}, D_{i}] = 0$

We see that u_{ii} constitute local \mathbb{Z}_2 gauge degrees of freedom as

$$\{\hat{u}_{ij},D_i\}=0$$

Vortex sectors

Changing eigenvalues of plaquette operators creates *vortices*. These are always created in pairs as shown below:

Vortices can be created by applying the operators (and combinations):

$$\hat{O}_1 = \exp\left(-i\frac{\pi}{2}\hat{\sigma}_a^z\right)$$

creates vortex-pair in plaquettes 1 and 2

$$\hat{O}_2 = \exp\left(-i\frac{\pi}{2}\hat{\sigma}_a^x\right)\exp\left(-i\frac{\pi}{2}\hat{\sigma}_b^y\right)$$

creates vortex-pair in plaquettes 3 and 4

Groundstate energy

The *groundstate* is the lowest energy eigenstate of the Hamiltonian \longrightarrow resides in the no-vortex sector

Its energy can be obtained by diagonalizing the Hamiltonian in momentum space:

$$H = \sum_{\mathbf{k}} E_{\mathbf{k}} (\gamma_{\mathbf{k}}^{\dagger} \gamma_{\mathbf{k}} - \frac{1}{2}), \quad E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$$

where $\gamma_{\bf k}^{\dagger}$ and $\gamma_{\bf k}$ are fermionic (Majorana) creation and annihilation operators,

$$\epsilon_{\mathbf{k}} = 2[-\cos(k_1) - \cos(k_2)],$$

$$\Delta_{\mathbf{k}} = 2[\sin(k_1) + \sin(k_2)],$$

and k resides in the first Brillouin zone of the lattice:

10 / 25

Ising Anyons

We see that the groundstate has energy

$$E_{\rm gr} = -\frac{1}{2} \sum_{\mathbf{k}} E_{\mathbf{k}}$$

Moreover, note that acting with $\gamma_{\mathbf{k}}^{\dagger}$ creates quasiparticle excitations → these have higher energy

It turns out that vortices carry Majorana modes and when one fuses two vortices, the resulting Hilbert space is two-dimensional: 0 quasiparticles/1 quasiparticle → reminiscent of Ising anyons!

Kitaev showed that the following correspondence to the Ising model holds:

Honeycomb lattice	Ising model		
Groundstate	\leftrightarrow	1, vacuum	
Vortex	\leftrightarrow	σ , non-Abelian anyon	
Quasiparticle excitation	\leftrightarrow	ψ , fermion	

Outline

- Introduction
- 2 The Kitaev Honeycomb model
 - Majorana fermion realization
 - Emerging lattice gauge theory
 - Ising Anyons
- Solving the Honeycomb model in spin basis
 - RBM representation
 - Conformal block representation
- 4 Conclusions

RBM representation

The previous method presented only gives the energy eigenvalues

To obtain the wavefunctionsone has to diagonalize the Hamiltonian in spin basis

- \longrightarrow 2^N-dimensional vector space (where N is the number of sites)
- $\longrightarrow \mathsf{grows} \ \mathsf{exponentially} \ \mathsf{with} \ \mathsf{spin} \ \mathsf{number}$

Our Ansatz: Use a *Restricted Boltzmann Machine* (RBM) to reduce the number of free parameters to polynomial in spin number

 \longrightarrow express wavefunction as

$$|\Phi\rangle = \sum_{\textbf{s}} \Phi_{\Omega}(\textbf{s}) |\textbf{s}\rangle$$

where $\mathbf{s} = (s_1, s_2, \dots, s_N)$ and the s_i are projections of the spins on the z axis. For example,

$$|\mathbf{s}\rangle = |\uparrow\uparrow\cdots\downarrow\cdots\uparrow\rangle,$$

and

$$\Phi_{\Omega}(s) = \sum_{\{h_k\}} e^{\sum_k a_k \sigma_k^z + \sum_{k'} b_{k'} h_{k'} + \sum_{kk'} W_{kk'} h_k \sigma_{k'}^z}.$$

In the above representation, $\{h_k\}=\{-1,1\}^M$ is the set of possible configurations of hidden layer nodes and

$$\Omega = (a_k, b_{k'}, W_{kk'})$$

is the set of weights and biases of the RBM. Pictorially, we have

The weights and biases of the RBM have to be trained in such a way that the final state represents the desired quantum state of the model. # parameters is polynomial in system size \longrightarrow computationally feasible Summing over the values of $\{h_k\}$, we get

$$\Phi_{\Omega}(\mathbf{s}) = e^{\sum_k a_k \sigma_k^z} imes \prod_{k'} \cosh\left(\sum_k W_{kk'} \sigma_k^z + b_{k'}
ight)$$

Training

In order to find the groundstate, the RBM is trained by minimizing

$$E_{\Omega} = \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle}$$

via stochastic gradient descent . After each training step we project onto translation invariant states in order to restrict RBM to physical parameter space:

$$|\Phi'\rangle = \sum_{\textit{m.n}} \hat{T}_{\textit{m} \mathbf{a}_1 + \textit{n} \mathbf{a}_2} |\Phi\rangle \; , \label{eq:phi}$$

where $\hat{T}_{m\mathbf{a}_1+n\mathbf{a}_2}$ are operators translating m steps along the \mathbf{a}_1 direction and n steps along the \mathbf{a}_2 direction. $\hat{T}_{m\mathbf{a}_1+n\mathbf{a}_2}$ can be realized as a permutation matrix acting on quantum states or a permutation of RBM parameters.

Results

We use several different methods to compute the groundstate energy and compare them:

- a) Analytic formula (i: periodic bdc, ii: anti-periodic bdc)
- b) Original method of Kitaev (using Majorana fermion representation of spins)
- c) Direct diagonalization of Hamiltonian for small system sizes
- d) RBM results using the **NetKet** package
- e) RBM results using our own package written using **PyTorch**

lattice size	2×2	2×3	2×4	3×3	3×4	4×4	5×5	6×6	7×7	3×3 with $K = 0.2$
								-56.7529		
								-56.2668		
b	-6	-9.2915	-12.4721	-14.2915	-19.0918	-25.4164	-39.3892	-56.2668	-77.1249	
								-		
d	-6.9282	-9.8003	-12.573	-13.7374	-18.0466	-24.0783	-37.305	-52.920	-71.793	
e	-6.9282	-9.8003	-12.9293	-14.2787						-17.393

Excited states can be created from the groundstate by applying string operators

$$\hat{S} = \prod_{lpha-\mathit{links}} \exp{(-irac{\pi}{2}\hat{\sigma}_\circ^lpha)} \; .$$

These have representations at the level of the RBM:

$$\begin{split} \hat{S}_{l}^{z}: \left(W_{lk'}, a_{l}\right) &\mapsto \left(W_{lk'}, a_{l} - i\frac{\pi}{2}\right) \\ \hat{S}_{l}^{x}: \left(W_{lk'}, a_{l}\right) &\mapsto \left(-W_{lk'}, -a_{l}\right) \\ \hat{S}_{l}^{y}: \left(W_{lk'}, a_{l}\right) &\mapsto \left(-W_{lk'}, -a_{l} - i\frac{\pi}{2}\right) . \end{split}$$

 \longrightarrow can create vortices and measure plaquette operator eigenvalues + energy:

0	1	2	3	0
Α	z	В	1	٩
7	C	5	D D	7
2	3	<u> </u>	1	2

(c)	2	×	2	lattic
-----	---	---	---	--------

Spin Flip Operator (acting successively)	VV A				Energy
Groundstate	0.9489	0.9517	0.9525	0.9553	-6.078
\hat{S}_5^x	0.9489	0.9517 -0.9517	0.9525	-0.9553	-4.011
\hat{S}_{7}^{y}	-0.9489	-0.9517	0.9525	0.9553	-1.804
\hat{S}^z_3	0.9489	0.9517	0.9525	0.9553	0.061

(d) Vortex sectors

401491471717

Conformal block representation

Using the correspondence between (2+1)d topological field theories and 2d CFTs, wavefunctions are identified with conformal blocks:

 \longrightarrow for $SU(p)_k$ WZW models we have

$$\Psi_0(z_1,\ldots,z_N) = \prod_{i< j}^N (z_i-z_j)^{n+k/p} \langle \mathcal{O}_R(z_1)\ldots \mathcal{O}_R(z_N) \rangle e^{-\sum_i |z_i|^2/4l_B^2}$$

In order to guarantee a single groundstate on the 2-sphere, the conformal block $\langle \mathcal{O}_R(z_1) \dots \mathcal{O}_R(z_N) \rangle$ is computed in the representation $R = \operatorname{Sym}_k$, satisfying

$$\underbrace{\operatorname{Sym}_k \times \operatorname{Sym}_k \times \ldots \times \operatorname{Sym}_k}_{p} = 1$$

The Kitaev model is in the same universality class as the $SU(2)_2$ WZW model, i.e. $p = k = 2 \longrightarrow Pfaffian \ state$:

$$\Psi_0^{\text{Pf}}(\{z_i\}) = \text{Pf}\left(\frac{|ij\rangle_1}{z_i - z_j}\right) \prod_{i < j} (z_i - z_j)^{n+1} e^{-\frac{1}{4l_B^2} \sum_j |z_j|^2}$$

We have identified \mathcal{O}_R with the spin 1 field ψ of the Ising CFT The state $|ij\rangle_1$ is a spin singlet state formed from two spin 1 states

$$|ij\rangle_1 = |1_i\rangle| - 1_j\rangle + |-1_i\rangle|1_j\rangle - 2|0_i\rangle|0_j\rangle$$

Spin 1 states can be viewed as partons composed of fermionic creation (annihilation) operators giving *color* states

$$|a\rangle = c_a^{\dagger}|0\rangle, \quad a=1,2,3,$$

with the identification

$$|\pm\rangle = -(\pm|1\rangle + i|2\rangle)/\sqrt{2}$$
 and $|m=0\rangle = |3\rangle$

- \longrightarrow can obtain our spin $\frac{1}{2}$ states as projections of these!
- \longrightarrow we insert for each lattice site of the Honeycomb an Ising spin 1 field ψ and project down to a spin $\frac{1}{2}$ state
- \longrightarrow since $|ij\rangle_1$ is spin 1 singlet, the corresponding spin $\frac{1}{2}$ projection should be invariant under permutations of σ^x , σ^y and σ^z
- \longrightarrow generated by \hat{U}_{C_6} operator

We are interested in groundstate wave-functions on the *torus* \longrightarrow the two-point correlation function of two ψ -fields is

$$\langle \psi(z_i)\psi(z_j)\rangle \sim \frac{\vartheta[\alpha](z_i-z_j)}{\vartheta_1(z_i-z_j)}$$

which implies that our Pfaffian state is given by

$$\Psi_{0,\alpha}^{\mathrm{Pf}}(z_1,\ldots,z_N) = e^{-\sum_i |z_i|^2/4l_B^2} F_{\mathrm{cm}}^{\alpha}(\sum_i z_i) \operatorname{Pf}\left(\frac{\vartheta[\alpha](z_i-z_j)}{\vartheta_1(z_i-z_j)}|ij\rangle_1\right) \prod_{i< j} \vartheta_1(z_i-z_j)$$

There are three states with even spin structure $\alpha = (0,0)$, (1/2,0), and (0,1/2) \longrightarrow groundstate is triple-degenerate!

Moreover, the wave-function is translation invariant under

$$z_i \mapsto z_i + m\mathbf{a}_1 + n\mathbf{a}_2 \quad \forall i.$$

→ physical reason for projection onto translation invariant states in the RBM!

4 D > 4 P > 4 E > 4 E > E 9 9 P

Recall the Kitaev Hamiltonian

$$H = -\sum_{\text{x links}} \sigma_i^{\text{x}} \sigma_j^{\text{x}} - \sum_{\text{y links}} \sigma_i^{\text{y}} \sigma_j^{\text{y}} - \sum_{\text{z links}} \sigma_i^{\text{z}} \sigma_j^{\text{z}} - K \sum_{(i,j,k)} \sigma_i^{\text{x}} \sigma_j^{\text{y}} \sigma_k^{\text{z}}$$

 \longrightarrow invariant under simultaneous permutation of x-, y-, and z-links as well as a permutation of the Pauli matrices. While we identified the second operation as the action of the \hat{U}_{C_6} -operator, the first one is the \hat{C}_6 -operator. For a 3×3 lattice the action is given by:

о 1 3 4 5 0 10 11 11 11 12 13 16 17 12

Thus we see that \hat{C}_6 -operator permutes sites clockwise by 120 degrees. As an action on the difference of site-coordinates, it has the following representation:

$$\hat{C}_6(z_i-z_j)=e^{2\pi i/3}(z_i-z_j)=(\tau-1)(z_i-z_j)$$

where $\tau = e^{i\pi/3}$ is the complex structure of the 3 \times 3 lattice with periodic boundary conditions.

But this is nothing else than a modular transformation:

$$\vartheta[\alpha](\tau,(\tau-1)(z_{i}-z_{j})) = \vartheta\begin{bmatrix} \epsilon \\ \epsilon' \end{bmatrix}(\tau,(\tau-1)(z_{i}-z_{j}))$$

$$= \kappa([\alpha],\gamma)^{-1}(\tau-1)^{-\frac{1}{2}}e^{-i\pi\frac{(z_{i}-z_{j})^{2}}{\tau-1}}\vartheta\begin{bmatrix} -\epsilon-\epsilon'-1/2 \\ \epsilon \end{bmatrix}\left(-\frac{1}{\tau-1},z_{i}-z_{j}\right)$$

$$= \kappa([\alpha],\gamma)^{-1}(\tau-1)^{-\frac{1}{2}}e^{-i\pi\frac{(z_{i}-z_{j})^{2}}{\tau-1}}\vartheta\begin{bmatrix} -\epsilon-\epsilon'-1/2 \\ \epsilon \end{bmatrix}(\tau,z_{i}-z_{j}).$$

giving

$$\hat{C}_{6} \frac{\vartheta[\alpha](\tau, z_{i} - z_{j})}{\vartheta_{1}(\tau, z_{i} - z_{j})} = \kappa([\alpha], \gamma)^{-1} \kappa \left(\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \gamma \right) \frac{\vartheta[\beta](\tau, z_{i} - z_{j})}{\vartheta_{1}(\tau, z_{i} - z_{j})}$$

$$\alpha = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \to \beta = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \quad \alpha = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix} \to \beta = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}, \quad \alpha = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix} \to \beta = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Outline

- Introduction
- 2 The Kitaev Honeycomb model
 - Majorana fermion realization
 - Emerging lattice gauge theory
 - Ising Anyons
- Solving the Honeycomb model in spin basis
 - RBM representation
 - Conformal block representation
- Conclusions

Summary and Outlook

- The Kitaev Honeycomb model is a spin lattice model admitting topological order.
- It has a topological sector where it supports Ising anyons with non-Abelian braiding statistics.
- We construct the eigen-wavefunctions of the Hamiltonian using a Restricted Boltzmann machine,
- find the lowest energy eigenstate using stochastic gradient descent,
- built excited states using vortex pairs,
- ullet identify the groundstates with certain conformal blocksof the Ising model on the torus involving ψ -fields.
- Our Ansatz has the right symmetries of the Hamiltonian which can be shown using modularity.
- In future: plan to extend our map to conformal blocks to excited states using σ -fields

Thank you!

