
Machine learning the Kitaev Honeycomb model

Babak Haghighat

Tsinghua University

Based on work with: M. Noormandipoor and Y. Sun.

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 1 / 25



Introduction

Outline

1 Introduction

2 The Kitaev Honeycomb model
Majorana fermion realization
Emerging lattice gauge theory
Ising Anyons

3 Solving the Honeycomb model in spin basis
RBM representation
Conformal block representation

4 Conclusions

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 2 / 25



Introduction

Non-Abelian Phases of Matter

Fractional Quantum Hall Effect with filling fraction ν = 5
2 was observed

experimentally through measurement of electric Hall conductivity by R.
Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H.
English [1987].

Theoretical explanation in terms of a Non-Abelian phase of matter was given
by G. Moore and N. Read [1991]. But other explanations in terms of Abelian
phases of matter were also proposed and were consistent with experimental
results.

This situation changed with the recent experimental measurement of thermal
Hall conductivity at ν = 5

2 by M. Banerjee, M. Heiblum, V. Umansky, D. E.
Feldman, Y. Oreg and A. Stern [2018] .
⇒ Experimental confirmation of Non-Abelian phases of matter in nature!

Kitaev Honeycomb model Kitaev [2006] provides a spin lattice realization of
a Non-Abelian phase of matter ⇒ worth studying further in these exciting
times!

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 3 / 25



The Kitaev Honeycomb model

Outline

1 Introduction

2 The Kitaev Honeycomb model
Majorana fermion realization
Emerging lattice gauge theory
Ising Anyons

3 Solving the Honeycomb model in spin basis
RBM representation
Conformal block representation

4 Conclusions

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 4 / 25



The Kitaev Honeycomb model

Kitaev Honeycomb model

The Kitaev model is a spin lattice model on a honeycomb lattice:

(a) Honeycomb lattice (b) Periodic boundary conditions
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The Kitaev Honeycomb model Majorana fermion realization

Kitaev’s solution: realize spin 1/2 particles at each site i by two complex spinless
fermionic modes a1,i and a2,i

| ↑〉 = |00〉, | ↓〉 = |11〉

with a1|00〉 = a2|00〉 = 0 and |11〉 = a†1a
†
2|00〉. This representation is faithful if

one eliminates states with only a single fermionic mode. This can be done by the
projector

Di |Ψ〉 = |Ψ〉,

where
Di = (1− 2a†a,ia1,i )(1− 2a†2,ia2,i ).

Defining ‘real’ and ‘imaginary’ modes

ci = a1,i + a†1,i , bxi = i(a†1,i − a1,i ), byi = a2,i + a†2,i , bzi = i(a†2,i − a2,i ),

one can realize Pauli matrices by defining

σαi = ibαi ci for α = x , y , z
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The Kitaev Honeycomb model Majorana fermion realization

Employing this representation the Hamiltonian interactions become

σαi σ
α
j = −i ûijcicj and σx

i σ
y
j σ

z
k = −i ûik ûjkDkcicj ,

where one defines the link operators

ûij = ibαi b
α
j , α = x , y , z

depending on the type of link (ij) as shown in the figure. The ûij have the
following properties:

ûij = −ûji , û2
ij = 1, û†ij = ûij

The Hamiltonian can then be rewritten as

H =
i

4

∑
i,j

Âijcicj , Âij = 2ûij + 2K
∑
k

ûik ûjk
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The Kitaev Honeycomb model Emerging lattice gauge theory

Emerging lattice gauge theory

First note that
[H,Di ] = 0,

−→ diagonalising Hamiltonian is compatible with restricting to physical subspace
Di = +1 for all i :

H|Ψ〉 = E |Ψ〉 and Di |Ψ〉 = |Ψ〉

Consider now the plaquette operators

ŵp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 =

∏
i,j∈p

ûij

These operators have eigenvalues ±1 and commute with the Hamiltonian and
with the Di operators:

[ŵp,H] = 0 and [ŵp,Di ] = 0

We see that uij constitute local Z2 gauge degrees of freedom as

{ûij ,Di} = 0
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The Kitaev Honeycomb model Ising Anyons

Vortex sectors

Changing eigenvalues of plaquette operators creates vortices. These are always
created in pairs as shown below:

Vortices can be created by applying the operators (and combinations):

Ô1 = exp (−i
π

2
σ̂z
a )

creates vortex-pair in plaquettes 1 and 2

Ô2 = exp (−i
π

2
σ̂x
a ) exp (−i

π

2
σ̂y
b )

creates vortex-pair in plaquettes 3 and 4
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The Kitaev Honeycomb model Ising Anyons

Groundstate energy

The groundstate is the lowest energy eigenstate of the Hamiltonian
−→ resides in the no-vortex sector
Its energy can be obtained by diagonalizing the Hamiltonian in momentum space:

H =
∑
k

Ek(γ†kγk −
1

2
), Ek =

√
ε2
k + ∆2

k

where γ†k and γk are fermionic (Majorana) creation and annihilation operators,

εk = 2[− cos(k1)− cos(k2)],

∆k = 2[sin(k1) + sin(k2)],

and k resides in the first Brillouin zone of the lattice:
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The Kitaev Honeycomb model Ising Anyons

Ising Anyons

We see that the groundstate has energy

Egr = −1

2

∑
k

Ek

Moreover, note that acting with γ†k creates quasiparticle excitations
−→ these have higher energy
It turns out that vortices carry Majorana modes and when one fuses two vortices,
the resulting Hilbert space is two-dimensional: 0 quasiparticles/1 quasiparticle
−→ reminiscent of Ising anyons!
Kitaev showed that the following correspondence to the Ising model holds:

Honeycomb lattice Ising model
Groundstate ↔ 1, vacuum

Vortex ↔ σ, non-Abelian anyon
Quasiparticle excitation ↔ ψ, fermion
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Solving the Honeycomb model in spin basis RBM representation

RBM representation

The previous method presented only gives the energy eigenvalues
To obtain the wavefunctionsone has to diagonalize the Hamiltonian in spin basis
−→ 2N -dimensional vector space (where N is the number of sites)
−→ grows exponentially with spin number

Our Ansatz: Use a Restricted Boltzmann Machine (RBM) to reduce the number
of free parameters to polynomial in spin number
−→ express wavefunction as

|Φ〉 =
∑
s

ΦΩ(s)|s〉

where s = (s1, s2, . . . , sN) and the si are projections of the spins on the z axis. For
example,

|s〉 = | ↑↑ · · · ↓ · · · ↑〉,
and

ΦΩ(s) =
∑
{hk}

e
∑

k akσ
z
k+

∑
k′ bk′hk′+

∑
kk′ Wkk′hkσ

z
k′ .
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Solving the Honeycomb model in spin basis RBM representation

In the above representation, {hk} = {−1, 1}M is the set of possible configurations
of hidden layer nodes and

Ω = (ak , bk′ ,Wkk′)

is the set of weights and biases of the RBM. Pictorially, we have

The weights and biases of the RBM have to be trained in such a way that the
final state represents the desired quantum state of the model.
# parameters is polynomial in system size −→ computationally feasible
Summing over the values of {hk}, we get

ΦΩ(s) = e
∑

k akσ
z
k ×

∏
k′

cosh

(∑
k

Wkk′σ
z
k + bk′

)
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Solving the Honeycomb model in spin basis RBM representation

Training

In order to find the groundstate, the RBM is trained by minimizing

EΩ =
〈Φ|H|Φ〉
〈Φ|Φ〉

via stochastic gradient descent . After each training step we project onto
translation invariant states in order to restrict RBM to physical parameter space:

|Φ′〉 =
∑
m,n

T̂ma1+na2 |Φ〉 ,

where T̂ma1+na2 are operators translating m steps along the a1 direction and n
steps along the a2 direction. T̂ma1+na2 can be realized as a permutation matrix
acting on quantum states or a permutation of RBM parameters.
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Solving the Honeycomb model in spin basis RBM representation

Results

We use several different methods to compute the groundstate energy and compare
them:

a) Analytic formula (i: periodic bdc, ii: anti-periodic bdc)

b) Original method of Kitaev (using Majorana fermion representation of spins)

c) Direct diagonalization of Hamiltonian for small system sizes

d) RBM results using the NetKet package

e) RBM results using our own package written using PyTorch
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Solving the Honeycomb model in spin basis RBM representation

Excited states can be created from the groundstate by applying string operators

Ŝ =
∏

α−links

exp (−i π
2
σ̂α◦ ) .

These have representations at the level of the RBM:

Ŝz
l : (Wlk′ , al) 7→

(
Wlk′ , al − i

π

2

)
Ŝx
l : (Wlk′ , al) 7→ (−Wlk′ ,−al)

Ŝy
l : (Wlk′ , al) 7→

(
−Wlk′ ,−al − i

π

2

)
.

−→ can create vortices and measure plaquette operator eigenvalues + energy:

(c) 2 × 2 lattice (d) Vortex sectors
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Solving the Honeycomb model in spin basis Conformal block representation

Conformal block representation

Using the correspondence between (2+1)d topological field theories and 2d CFTs,
wavefunctions are identified with conformal blocks:
−→ for SU(p)k WZW models we have

Ψ0(z1, . . . , zN) =
N∏
i<j

(zi − zj)
n+k/p〈OR(z1) . . .OR(zN)〉e−

∑
i |zi |

2/4l2B

In order to guarantee a single groundstate on the 2-sphere, the conformal block
〈OR(z1) . . .OR(zN)〉 is computed in the representation R = Symk , satisfying

Symk × Symk × . . .× Symk︸ ︷︷ ︸
p

= 1

The Kitaev model is in the same universality class as the SU(2)2 WZW model, i.e.
p = k = 2 −→ Pfaffian state:

ΨPf
0 ({zi}) = Pf

(
|ij〉1

zi − zj

)∏
i<j

(zi − zj)
n+1e

− 1

4l2
B

∑
j |zj |

2
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Solving the Honeycomb model in spin basis Conformal block representation

We have identified OR with the spin 1 field ψ of the Ising CFT
The state |ij〉1 is a spin singlet state formed from two spin 1 states

|ij〉1 = |1i 〉| − 1j〉+ | − 1i 〉|1j〉 − 2|0i 〉|0j〉

Spin 1 states can be viewed as partons composed of fermionic creation
(annihilation) operators giving color states

|a〉 = c†a |0〉, a = 1, 2, 3,

with the identification

|±〉 = −(±|1〉+ i |2〉)/
√

2 and |m = 0〉 = |3〉

−→ can obtain our spin 1
2 states as projections of these!

−→ we insert for each lattice site of the Honeycomb an Ising spin 1 field ψ and
project down to a spin 1

2 state
−→ since |ij〉1 is spin 1 singlet, the corresponding spin 1

2 projection should be
invariant under permutations of σx , σy and σz

−→ generated by ÛC6 operator
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Solving the Honeycomb model in spin basis Conformal block representation

We are interested in groundstate wave-functions on the torus
−→ the two-point correlation function of two ψ-fields is

〈ψ(zi )ψ(zj)〉 ∼
ϑ[α](zi − zj)

ϑ1(zi − zj)

which implies that our Pfaffian state is given by

ΨPf
0,α(z1, . . . , zN) = e−

∑
i |zi |

2/4l2BFαcm(
∑
i

zi )Pf

(
ϑ[α](zi − zj)

ϑ1(zi − zj)
|ij〉1

)∏
i<j

ϑ1(zi − zj)

There are three states with even spin structure α = (0, 0), (1/2, 0), and (0, 1/2)
−→ groundstate is triple-degenerate!
Moreover, the wave-function is translation invariant under

zi 7→ zi + ma1 + na2 ∀ i .

−→ physical reason for projection onto translation invariant states in the RBM!

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 20 / 25



Solving the Honeycomb model in spin basis Conformal block representation

Recall the Kitaev Hamiltonian

H = −
∑

x links

σx
i σ

x
j −

∑
y links

σy
i σ

y
j −

∑
z links

σz
i σ

z
j − K

∑
(i,j,k)

σx
i σ

y
j σ

z
k

−→ invariant under simultaneous permutation of x-, y -, and z-links as well as a
permutation of the Pauli matrices. While we identified the second operation as
the action of the ÛC6 -operator, the first one is the Ĉ6-operator.
For a 3× 3 lattice the action is given by:
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Solving the Honeycomb model in spin basis Conformal block representation

Thus we see that Ĉ6-operator permutes sites clockwise by 120 degrees. As an
action on the difference of site-coordinates, it has the following representation:

Ĉ6(zi − zj) = e2πi/3(zi − zj) = (τ − 1)(zi − zj)

where τ = e iπ/3 is the complex structure of the 3× 3 lattice with periodic
boundary conditions.
But this is nothing else than a modular transformation:

ϑ[α](τ, (τ − 1)(zi − zj) = ϑ
[ ε
ε′

]
(τ, (τ − 1)(zi − zj))

= κ ([α], γ)−1 (τ − 1)−
1
2 e−iπ

(zi−zj )2

τ−1 ϑ

[
−ε− ε′ − 1/2

ε

](
− 1

τ − 1
, zi − zj

)
= κ ([α], γ)−1 (τ − 1)−

1
2 e−iπ

(zi−zj )2

τ−1 ϑ

[
−ε− ε′ − 1/2

ε

]
(τ, zi − zj).

giving

Ĉ6
ϑ[α](τ, zi − zj)

ϑ1(τ, zi − zj)
= κ([α], γ)−1κ

([
1/2

1/2

]
, γ

)
ϑ[β](τ, zi − zj)

ϑ1(τ, zi − zj)

α =

[
0

0

]
→ β =

[
1/2

0

]
, α =

[
1/2

0

]
→ β =

[
0

1/2

]
, α =

[
0

1/2

]
→ β =

[
0

0

]
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Conclusions

Summary and Outlook

The Kitaev Honeycomb model is a spin lattice model admitting topological
order.

It has a topological sector where it supports Ising anyons with non-Abelian
braiding statistics.

We construct the eigen-wavefunctions of the Hamiltonian using a Restricted
Boltzmann machine,

find the lowest energy eigenstate using stochastic gradient descent,

built excited states using vortex pairs,

identify the groundstates with certain conformal blocksof the Ising model on
the torus involving ψ-fields.

Our Ansatz has the right symmetries of the Hamiltonian which can be shown
using modularity.

In future: plan to extend our map to conformal blocks to excited states using
σ-fields
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Conclusions

Thank you!

Babak Haghighat (Tsinghua University) Machine learning the Kitaev Honeycomb model String Data 2021 12/15/2021 25 / 25


	Introduction
	The Kitaev Honeycomb model
	Majorana fermion realization
	Emerging lattice gauge theory
	Ising Anyons

	Solving the Honeycomb model in spin basis
	RBM representation
	Conformal block representation

	Conclusions

