

Towards Solving CFTs with Reinforcement Learning

Costis Papageorgakis, QMUL

String Data 2021, 15th of December 2021

Based on [arxiv:2108.08859, arXiv:2108.09330] with Gergely Kántor and Vasilis Niarchos

Motivation

- gravity via AdS/CFT...
- But their nonperturbative solution is hard
- (Modern) Conformal Bootstrap: make assumptions about CFT spectrum and check consistency with crossing equations [Rattazzi, Rychkov, Tonni, Vichi '08]
- (Numerical Modern) Conformal Bootstrap: Linear/semi-definite programming methods give sharp bounds in parameter space

Here: Introduce a complementary numerical approach making use of **Reinforcement Learning techniques**

CFTs are ubiquitous: UV/IR behaviour of QFTs, phase transitions, quantum

Theoretical framework

Consider conformal primary scalar operators \mathcal{O}_i of scaling dimension Δ_i in a CFT

OPE:
$$\mathcal{O}_{i}(x_{1}) \mathcal{O}_{j}(x_{2}) = \sum_{k} C_{ij}^{k} \hat{f}_{ij}^{k}(x_{1}, x_{2}, \partial_{x_{2}}) \mathcal{O}_{k}(x_{2})$$

All CFT data encoded in conformal scaling dimensions Δ_i and OPE coefficients C_{ii}^k

Associativity of OPE for $\langle \mathcal{O}_{i_1}(x_1) \mathcal{O}_{i_2}(x_1) \rangle$

crossing equations \Rightarrow

$$\mathfrak{O}_{i_2}(x_2) \mathcal{O}_{i_3}(x_3) \mathcal{O}_{i_4}(x_4)$$
 leads to:

constraints on CFT data

Concrete examples: 2D CFT

The crossing equation is:

$$\sum_{h,\bar{h}} {}^{s} \mathfrak{C}_{h,\bar{h}} g_{h,\bar{h}}^{(1234)}(z,\bar{z}) - (-1)^{(h_{41}+\bar{h}_{41})} \frac{z^{n_{1}+n_{2}}}{(z-1)^{h_{2}-1}}$$

- OPE-coefficients squared: $s_{s,t} \mathfrak{G}_{h,\bar{h}}$
- Positions of $\mathcal{O}_{1,2,3,4}$: (z, \overline{z})
- Scaling dimension: $\Delta = h + h$ and spin: $\ell = h h$ (fix spin)
- 2D conformal blocks:

 $g_{h\bar{h}}^{1234}(z,\bar{z}) = z^{h}\bar{z}^{\bar{h}}_{2}F_{1}(h-h_{12},h+h_{23})$

 $\frac{z^{h_1+h_2}}{-1)^{h_2+h_3}} \frac{\bar{z}^{\bar{h}_1+\bar{h}_2}}{(\bar{z}-1)^{\bar{h}_2+\bar{h}_3}} \sum_{h',\bar{h}'} \mathcal{C}_{h',\bar{h}'} g_{h',\bar{h}'}^{(3214)}(1-z,1-\bar{z}) = 0$

$$_{34}; 2h; z) \times {}_2F_1\left(\bar{h} - \bar{h}_{12}, \bar{h} + \bar{h}_{34}; 2\bar{h}; \bar{z}\right)$$

\Rightarrow Crossing equations are hard to solve exactly

- \Rightarrow Simplify to produce a numerically tractable system
 - Truncate sum over intermediate operators in conformal-block expansion up to some Δ_{max} [Gliozzi '13]
 - Reduce single (functional) crossing equation $E(z, \overline{z}; \overrightarrow{\Delta}, \overrightarrow{\mathfrak{C}})$ to discrete set of algebraic equations $E(\Delta, \mathfrak{C})$ for specific (z, \overline{z})

number of unknowns N_{unknown} , $(\overline{\Delta}, \mathfrak{C})$

For fixed external operators, leads to finite number of equations N_7 for finite

Evaluate truncated, reduced crossing equations $\vec{E}(\Delta, \mathfrak{C}) = 0$ for $N_7 > N_{\text{unknown}}$ points

No exact solution but we can look for approximate (numerical) solutions minimising $\vec{E}(\vec{\Delta},\vec{\mathfrak{C}})$ [Li '17]

Note: Choice of z-sampling motivated by:

- Theory (OPE convergence)
- Numerics (evaluation of ${}_2F_1$ hypergeometrics in Python)

 \Rightarrow This is a problem especially well suited to Reinforcement Learning

Attack the problem using "off the shelf" RL algorithms

 \Rightarrow Chose to work with popular soft-Actor-Critic algorithm [Harnooja, Zhou, Abbeel, Levine '18]

- Involves a stochastic actor aiming to maximise both reward and entropy
- Can handle continuous state and action spaces
- It is model-free and stable when applied to several scenarios

Reward function: total violation of reduced crossing equations

$$R := -\|\overrightarrow{E}\| \qquad \text{or}$$

R := 1/||E||

Calibration with 2D Ising Model

•
$$\langle \sigma \sigma \sigma \sigma \rangle$$
 correlator for $N_z = 29$

$\Delta_{\sigma} = \frac{1}{8}$					
spin	analytic Δ	RL Δ	analytic C	$\operatorname{RL} \mathfrak{C}$	
0	4	3.9331603	2.44141×10^{-4}	$3.657538{ imes}10^{-4}$	
0	1	0.9881525	0.25	0.25254947	
2	2	1.9802496	0.015625	0.015717817	
4	4	3.9497	2.19727×10^{-4}	2.4715587×10^{-4}	
6	6	5.971367	1.36239×10^{-5}	$0.54007314 \times 10^{-5}$	

- Stays close to analytic values for Δ and reasonable predictions for ${\mathfrak C}$

"Discovery" of c = 1 compact free boson CFT

Start with minimal assumptions and see what our algorithm can do:

- Consider theory with exactly marginal coupling
- Take spin-less operators V_p with $\Delta_{V_p} := p^2$
- Assume these are charged under U(1) symmetry (V_p, \overline{V}_p)
- Consider correlator $\langle V_p V_p \overline{V}_p \overline{V}_p \rangle$ and associated crossing equations

- s-channel: OPE of $V_p V_p$ and $V_p V_p$
 - t-channel: OPE of $\overline{V}_p V_p$ and $V_p \overline{V}_p$
 - Input that truncated crossing equations involve spin-partition:

Spin	0	1	2	3	4	5
s-channel	2	1	1	1	1	1
t-channel	2	3	2	2	1	1

Run RL algorithm with $\Delta_{max} = 5.5$ and $N_z = 49$ to get for $\Delta_{V_p} = 0.1$

Marginal deformation U(1) current EM tensor

Channel	spin	ML Δ	ML \mathfrak{C}
s	0	0.40006787	1.0057276
	0	4.336432	$0.43016876 \times 10^{-5}$
	1	5.307818	$-2.2633198 \times 10^{-4}$
	2	2.4060674	5.486169×10^{-3}
	3	3.446559	$-0.4480493 \times 10^{-5}$
	4	4.410344	$0.27796367 \times 10^{-3}$
	5	5.3354797	-9.976282×10^{-5}
t	0	2.001293	0.0056684865
	0	4.0166564	$4.8836926\ \times 10^{-4}$
	1	1.040068	-0.085237
	1	3.0494268	-2.271628×10^{-2}
	1	4.9848695	-9.268466 $\times 10^{-4}$
	2	2.00707	0.0018059064
	2	4.045016	7.282457×10^{-4}
	3	3.0331514	-2.894943×10^{-4}
	3	4.9544168	$-3.3044117 \times 10^{-3}$
	4	3.9395354	6.668457×10^{-4}
	5	5.0390368	$-4.3607014 \times 10^{-4}$

in	analytic Δ	ML Δ	analytic \mathfrak{C}	ML C
)	0.4	0.40006787	1	1.0057276
)	4.4	4.336432	1.27551×10^{-5}	0.43016876×10
L	5.4	5.307818	0	-2.2633198 ×10
2	2.4	2.4060674	3.57143×10^{-3}	5.486169×10^{-1}
3	3.4	3.446559	0	-0.4480493 ×10
1	4.4	4.410344	1.96039×10^{-3}	0.27796367×10
5	5.4	5.3354797	0	-9.976282×10^{-5}
)	2	2.001293	0.01	0.0056684865
)	4	4.0166564	$2.5 imes 10^{-5}$	$4.8836926 \times 10^{-10}$
L	1	1.040068	-0.1	-0.085237
ι	3	3.0494268	-5×10^{-4}	-2.271628×10^{-1}
ι	5	4.9848695	-8.33333×10^{-7}	-9.268466×10^{-1}
2	2	2.00707	0.005	0.0018059064
2	4	4.045016	1.66667×10^{-5}	7.282457 $\times 10^{-10}$
3	3	3.0331514	-1.66667×10^{-4}	-2.894943×10^{-1}
3	5	4.9544168	-4.16667×10^{-7}	$-3.3044117 \times 10^{-3}$
1	4	3.9395354	4.16667×10^{-6}	6.668457×10^{-1}
5	5	5.0390368	-8.33333×10^{-8}	-4.3607014 ×10

\Rightarrow RL algorithm has succeeded:

The numbers improve as we include operators of increasing Δ

 \Rightarrow But keep in mind sources of error for \mathfrak{C} :

- Analytic errors from truncation of conformal-block expansion
- Choice of z-sampling in reducing the crossing-symmetry constraints
- Statistical errors
- Choice of reward function R

Conclusions

- Introduced a new RL approach to conformal bootstrap
- Our code is fully automated, using as input a spin-partition and predicts CFT data $(\overrightarrow{\Delta}, \overrightarrow{\mathfrak{C}})$ for specific theories
- Calibrated on 2D Minimal Models
- Used to "detect" the c = 1 free compact boson CFT. Excellent results for Δ . Results for \mathfrak{C} can be improved for precision

Outlook

- Improve efficiency of RL algorithm (implementation, understanding errors)
- Parallelise computations to account for statistical errors
- Scale up searches to O(100) unknowns
- Make systematic use of theory constraints (unitarity, global symmetries, supersymmetry) and multiple correlators to probe higher-dimensional CFTs
- Goal: Algorithm determines full theory by gradually adding in operators