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Motivation

• CFTs are ubiquitous: UV/IR behaviour of QFTs, phase transitions, quantum 
gravity via AdS/CFT…


• But their nonperturbative solution is hard


• (Modern) Conformal Bootstrap: make assumptions about CFT spectrum and 
check consistency with crossing equations 
[Rattazzi, Rychkov, Tonni, Vichi ’08]


• (Numerical Modern) Conformal Bootstrap: Linear/semi-definite programming 
methods give sharp bounds in parameter space

Here: Introduce a complementary numerical approach making use of 
Reinforcement Learning techniques



Theoretical framework

Consider conformal primary scalar operators  of scaling dimension 
 in a CFT
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Concrete examples: 2D CFT

The crossing equation is:
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2F1 (h − h12, h + h34; 2h; z) × 2F1 (h̄ − h̄12, h̄ + h̄34; 2h̄; z̄)

• OPE-coefficients squared: 


• Positions of  :  


• Scaling dimension:   and spin:  (fix spin)


• 2D conformal blocks:
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Δ = h + h̄ ℓ = h − h̄



 Crossing equations are hard to solve exactly ⇒

 Simplify to produce a numerically tractable system⇒

• Truncate sum over intermediate operators in conformal-block expansion up 
to some  [Gliozzi ’13]


• Reduce single (functional) crossing equation  to discrete set of 
algebraic equations  for specific  

Δmax

E(z, z̄; ⃗Δ , ⃗ℭ)⃗E ( ⃗Δ , ⃗ℭ) (z, z̄)

For fixed external operators, leads to finite number of equations  for finite 
number of unknowns , 

Nz
Nunknown ( ⃗Δ , ⃗ℭ)



Evaluate truncated, reduced crossing equations  for 
 points

⃗E ( ⃗Δ , ⃗ℭ) = 0
Nz > Nunknown

No exact solution but we can look for approximate (numerical) solutions  
minimising  [Li ’17]⃗E ( ⃗Δ , ⃗ℭ)

Note: Choice of z-sampling motivated by:


• Theory (OPE convergence) 


• Numerics (evaluation of  hypergeometrics in Python)2F1

 This is a problem especially well suited to Reinforcement Learning⇒



Attack the problem using “off the shelf” RL algorithms

 Chose to work with popular soft-Actor-Critic algorithm  
[Harnooja, Zhou, Abbeel, Levine ‘18]
⇒

• Involves a stochastic actor aiming to maximise both reward and entropy


• Can handle continuous state and action spaces


• It is model-free and stable when applied to several scenarios

Reward function: total violation of reduced crossing equations

R := −∥ ⃗E ∥ or R := 1/∥ ⃗E ∥



•  correlator for ⟨σσσσ⟩ Nz = 29

• Stays close to analytic values for  and reasonable predictions for Δ ℭ

Calibration with 2D Ising Model



“Discovery” of  compact free boson CFTc = 1

• Consider theory with exactly marginal 
coupling


• Take spin-less operators  with 



• Assume these are charged under 
 symmetry 


• Consider correlator  and 
associated crossing equations

Vp
ΔVp

:= p2

U(1) (Vp, Vp)

⟨VpVpVpVp⟩

Start with minimal assumptions and see what our algorithm can do:

• s-channel: OPE of  and 


• t-channel: OPE of  and 


• Input that truncated crossing 
equations involve spin-partition:

VpVp VpVp

VpVp VpVp



Run RL algorithm with  and  to get for Δmax = 5.5 Nz = 49 ΔVp
= 0.1

Marginal deformation

EM tensor

U(1) current



  compact free boson⇒ c = 1

•   are 
vertex operators with unit 
momentum and no winding


•

Vp(z, z̄) = eip(X(z)+X̄(z̄))

R = 1/p



 RL algorithm has succeeded:⇒

The numbers improve as we include operators of increasing Δ

• Analytic errors from truncation of conformal-block expansion


• Choice of z-sampling in reducing the crossing-symmetry constraints


• Statistical errors


• Choice of reward function  R

 But keep in mind sources of error for :⇒ ℭ



Conclusions

• Introduced a new RL approach to conformal bootstrap


• Our code is fully automated, using as input a spin-partition and predicts  
CFT data  for specific theories


• Calibrated on 2D Minimal Models 


• Used to “detect” the  free compact boson CFT. Excellent results for . 
Results for  can be improved for precision

( ⃗Δ , ⃗ℭ)

c = 1 Δ
ℭ



Outlook

• Improve efficiency of RL algorithm (implementation, understanding errors)


• Parallelise computations to account for statistical errors


• Scale up searches to  unknowns


• Make systematic use of theory constraints (unitarity, global symmetries, 
supersymmetry) and multiple correlators to probe higher-dimensional CFTs


• Goal: Algorithm determines full theory by gradually adding in operators

O(100)


