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Motivation

Knots are embeddings of a circle S1 in some 3-dimensional space.

A fundamental problem in knot theory is knot comparison. Given
two 2d knot diagrams (projections to a plane), how can we tell if
they represent the same knot?
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Motivation

To help identify knots, we compute topological invariants. If two
diagrams yield different invariants, they represent different knots.

The knot complement manifold S3 \ K , constructed by drilling out
a solid torus neighborhood of K , is a knot invariant (though not a
very useful one).
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Motivation

Understanding relationships between invariants is an important
question in knot theory, and such relationships are often associated
with important open problems.

For instance, the volume conjecture relates a certain family of
algebraic invariants to the hyperbolic volume of the knot
complement. One approach to the smooth 4d Poincaré conjecture
involves a knot invariant called the slice genus, a
difficult-to-compute geometric quantity for which the existence of
even a bound by an algebraic invariant is useful.

These relationships are also typically associated with subtle
phenomena in topological field theory and string theory. Prior work
demonstrated that, in some cases, they can be efficiently machine
learned. [Hughes] [Craven, Jejjala, AK]
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Outline

1. Review of relevant knot invariants and gauge theory

2. Machine learning correlations

3. Finding analytic explanations
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Knots and gauge theory

The Jones polynomial J(q) is a very useful and important knot
invariant. [Jones]

It is a Laurent polynomial in q with integer coefficients obeying the
recursion relation

qJ(!; q)− q−1J("; q) = (q1/2 − q−1/2)J(a; q),

J(⃝; q) = 1.

The simplest nontrivial knot, the trefoil knot, has Jones polynomial

J(&; q) = q + q3 − q4.
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Knots and gauge theory

The Jones polynomial and its generalizations are expectation
values of a Wilson loop along the knot in SU(2) Chern–Simons
theory on S3. [Witten 88]
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∫
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.

The original Jones polynomial corresponds to taking the Wilson
loop trace in the fundamental representation with dimension n = 2.
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Knots and gauge theory

The Jones polynomial can be categorified: there is a bigraded
cohomology theory H(K ) = ⊕m,nHm,n(K ) for which J(q) is the
graded Euler characteristic: [Khovanov]

(q + q−1)J(q2) =
∑
m,n

dimHm,n(K )(−1)mqn.

H(K ) is often presented in a tabular form. For the trefoil, H(&) is

n \m 0 1 2 3

1 Q
3 Q
5 Q
7

9 Q
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Knots and gauge theory

While it is not proven that H(K ) may be computed using gauge
theory, there is a proposal that H(K ) is the cohomology of a
supercharge Q in the 6d (0,2) theory on a certain Cauchy slice
with a surface operator ΣK whose topology is set by K . [Witten 11]

The space H(K ) also has a (non-UV-complete) description as the
Q-cohomology in the Hilbert space of 5d super-Yang-Mills theory,
where the bigrading is generated by a U(1)× U(1) symmetry
associated to fermion and instanton number operators. [Witten 11]

For the specialization yielding J(q), there is an equivalent 4d
super-Yang-Mills path integral which counts classical
supersymmetric solutions weighted by (−1)FqP where F and P are
the fermion and instanton numbers. This gives a 4d interpretation
of the Jones polynomial, originally a 3d invariant. [Gaiotto, Witten]
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Knots and gauge theory

Two other knot invariants, which (in a certain sense) are naturally
defined in 4d, are the Rasmussen s-invariant and smooth slice
genus g .

The s-invariant is defined using a certain spectral sequence which
collapses H(K ) ⇒ Q⊕Q, and the two remaining factors have
instanton grading s ± 1. [Lee] [Rasmussen]

The smooth slice genus of a knot K is the least integer g for which
there is a smooth surface Σ ⊂ B4 with genus g that has
K = ∂Σ ⊂ ∂B4.

The trefoil has s(&) = 2 and g(&) = 1.
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Knots and gauge theory
Neither s nor g have simple gauge theory interpretations, though s
may be accessible through certain supercharge deformations.
[Kronheimer, Mrowka] [Gukov et al]

There is sometimes a more direct connection between Khovanov
homology and s than the spectral sequence. Though false in
general, the knight move conjecture provides a formula for s in
terms of the Khovanov polynomial Kh(q, t) for many knots.
[Manolescu, Marengon]

The Khovanov polynomial is defined as

Kh(q, t) ≡
∑
m,n

dimHm,ntmqn.

The knight move conjecture states

Kh(q,−q−4) = qs(q + q−1).
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Knots and gauge theory

It is worthwhile to understand what sort of information is
contained in the Jones polynomial and Khovanov homology.
Rasmussen proved

|s| ≤ 2g ,

relating the s-invariant to the slice genus. But perhaps J(q) and
H(K ) know more about s and g than is obvious?
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Machine learning

We performed four classes of experiments using a simple two-layer
neural network with 100 hidden units per layer.

The input to the network was one of {J(q),Kh(q, t)} and the
output was one of {s, g}. As the outputs are integer-valued, we
set up a classification problem with a number of classes equal to
the number of possibilities in the dataset.
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Machine learning

The dataset consists of roughly 500,000 knots. Due to the
difficulty of computing the slice genus, the data generation process
was complicated.

We began with two groups of seed braids: the KnotInfo dataset
(1200 knots of known slice genus) and random quasipositive or
quasinegative braids (of the form ασ±

i α, known slice genus by the
slice-Bennequin inequality).

Given a seed braid β, we randomly inserted words of the form
γσ±

i γ
−1 into β. Each such insertion changes the slice Euler

characteristic by ±1 or 0, which together with the known initial
slice genus gives upper and lower bounds on the final slice genus.
A final sequence of Markov moves further randomized the dataset.
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Machine learning

Computation of other invariants was enough to completely fix the
slice genus for many knots.

For instance, using the software KnotJob, we computed
s-invariants and used |s| ≤ 2g . [Schütz]

A smaller dataset was generated using the random petal
permutation model, but the slice genus for these is hard to
compute and we excluded them from slice genus experiments.
[Adams et al]
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Machine learning

In total, we used a dataset of 535,239 knots with known J(q),
Kh(q, t), and s. We know g exactly for 438,295 of these.

Despite the careful construction, there are no known exact
relationships between these invariants in our dataset other than the
knight move conjecture, which holds for the vast majority of our
knots.

Kh(q,−q−4) = qs(q + q−1).
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Machine learning

The network predicts s and g with 98.3% and 98.6% accuracy
from Kh(q, t) when trained on 25% of the data, but these do not
drop below 94% when the training fraction is 1% of the total.

We obtain the following accuracies for predicting s or g from
specializations Kh(q,−qn) of the Khovanov polynomial:

n s-invariant accuracy slice genus accuracy

−5 0.9567± 0.0024 0.9700± 0.0021
−4 0.9977± 0.0010 0.9452± 0.0007
−3 0.9791± 0.0043 0.9716± 0.0068
−2 0.9988± 0.0005 0.9456± 0.0002
−1 0.9771± 0.0054 0.9751± 0.0051
0 0.9480± 0.0021 0.9720± 0.0016
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Machine learning
When trained on the same fraction, the network achieves 95% and
96% accuracy in predicting s or g respectively from J(q). When
the fraction is decreased to 1%, the accuracies are still close to
89%.

We also evaluate J(q = eπin/(k+2)) and assemble a vector for each
k with values n ∈ [0, k + 1].

k Rasmussen accuracy Slice genus accuracy

3 0.9314± 0.0013 0.9672± 0.0017

4 0.9186± 0.0009 0.9601± 0.0010

5 0.9650± 0.0006 0.9826± 0.0009

6 0.9674± 0.0007 0.9828± 0.0008

7 0.9676± 0.0007 0.9825± 0.0008

8 0.9673± 0.0005 0.9825± 0.0006

9 0.9669± 0.0011 0.9814± 0.0014

10 0.9680± 0.0006 0.9826± 0.0008
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Machine learning

The upshot of these experiments (see the paper for more) is that a
robust correlation exists between J(q) or Kh(q, t) and the
s-invariant or slice genus.

The slice genus correlation is very difficult to explain, as there is no
known simple formula to extract g from the Khovanov homology.
On the other hand, the s-invariant has a clear definition from
Khovanov homology, so we can look for analytic explanations of
this correlation.
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Analytic explanations

The correlations between Kh(q, t) or Kh(q,−q−4) and s are
simply explained using the knight move conjecture. However, the
strong performance of Kh(q,−q−2) is more mysterious.

We found that Kh(q,−q−2) often takes a form which is
completely fixed by s. For instance, nearly every knot in the
dataset obeys a relation similar to

Kh(q,−q−2) = qs
(
−
(
s
2 − 1

)
q +

(
s
2 + 1

)
q−1

)
.

There are also cases with three or more terms:

Kh(q,−q−2) = −qs−1 +
(
5 + s

2

)
qs+1 −

(
2 + s

2

)
qs+3.
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Analytic explanations

In these formulas, we know how to explain for a given knot which
powers of q will appear and how many terms the formula will have.
This comes from a substitution Kh(q, tq−2) to “renormalize” the
fermion grading before sending t = −1, which fixes the powers and
number of terms that can appear in terms of the instanton
gradings at t0, which are related directly to s.

The coefficients, on the other hand, cannot be so simply explained.
Their complete determination by s suggests that perhaps
Rasmussen’s invariant is encoded in Khovanov homology in more
than one way. Specifically, it is not just the instanton number
which may yield s, but also the total (appropriately graded)
number of supersymmetric ground states in the 5d
super-Yang–Mills theory.
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Analytic explanations

The correlation of the Jones polynomial with s is even less
understandable. It is common lore in knot theory that the
s-invariant captures information which is distinct from J(q).
Indeed, there are knots with identical J(q) but different s, so there
can be no precise formula for s which uses only J(q).

The gauge theory statement of this connection, which we are
currently exploring, is as follows. The correspondence between
Khovanov homology and the supercharge cohomology in 5d
super-Yang–Mills arises by applying stringy dualities to the 4d
N = 4 theory on R+ × R3 with a knot defect on the boundary.
This 4d path integral is equal by supersymmetric localization to
the 3d Chern–Simons path integral on its boundary, possibly with
an exotic integration cycle. [Witten 10] [Gaiotto, Witten]
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Analytic explanations

The correlation between J(q) and s points to an appearance in 3d
Chern–Simons theory of some specific information about
approximate supersymmetric ground states of the 5d theory which
arises by looking for a Hilbert space formulation of the 4d path
integral.

The conjecture we would like to make is that the space of exotic
integration cycles in 3d Chern–Simons theory has privileged access
to the instanton numbers of approximate supersymmetric ground
states in the 5d theory with fermion number zero, and in favorable
cases may actually determine these instanton numbers completely.

We are currently exploring this conjecture by trying to understand
the necessary deformation of Khovanov homology to derive s in
the 5d language.
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Conclusions

We have trained a neural network to learn robust correlations
between the Jones or Khovanov polynomials and the Rasmussen
s-invariant or slice genus. These correlations persist even when
training on 1% of the dataset.

We have partial analytic explanations for the Khovanov correlation
with the s-invariant, and a rough conjecture for a gauge theory
story approximately relating J(q) and s.

The correlations with g remain mysterious, and perhaps suggest
some kind of algebraic formula for the slice genus.
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Outlook

In previous work, a similar correlation between J(q) and the
hyperbolic volume was explained using exotic integration cycles in
Chern–Simons theory. [Craven, Jejjala, AK]

Though the volume is also not determined by J(q), understanding
the gauge theory mechanism leads one immediately to the
celebrated volume conjecture relating the colored Jones
polynomials to the hyperbolic volume.

If we can find a similar gauge theory mechanism here, whether
through gauge symmetry breaking, supercharge deformation, etc.,
will we be led to a “slice genus conjecture” or “s-invariant
conjecture”, this time relating some similar 3d algebraic invariant
to a geometric 4d invariant?
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