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Machine Learning & String Theory: Datasets

Datasets; sizes; inception

I Complete Intersection Calabi-Yau threefolds; 10k; 19881.

I Kreuzer Skarke dataset of CY threefolds; 500m; 2002.

I Supersymmetric bundles over CY manifolds; string derived particle physics
models; o(10k); 2007 and ongoing†.

I (Free) Discrete Symmetries of Complete Intersection Calabi-Yau threefolds 10k;
2010.

I Complete Intersection Calabi-Yau fourfolds; 1m; 2013.

I Discrete Symmetries of Complete Intersection Calabi-Yau quotient threefolds;
10k; 2017†.

I Transgressable bundles over Calabi-Yau threefolds; first examples, unknown
size!; 2018 and ongoing†.

New datasets are being (painstakingly) created. Machine Learning String theorists
have been working on these datasets and others, with the first such papers appearing
in 2017.

1possibly the first large dataset in algebraic-geometry



Research Directions

I Predicting topological properties of stringy geometries with high accuracy:
h1,1, h2,1, χ.

I Studying invariances of smooth Calabi-Yau threefolds (Fantastically symmetric
Calabi-Yaus and how to find them); 2

I Understanding String derived Standard Models.

I Study of moduli spaces of (stable) bundles over stringy geometries: Mrk
CY(V);

start with the study of toy (yet powerful) moduli spaces of line bundle sums.

I Towards discovering the Calabi-Yau metric (gMN) in three dimensions; start with
toy geometries like the torus, or K3 surfaces.

I Towards discovering the correct string vacuum; start with ML algorithms to
generate ad-hoc realistic string vacua.

I Understanding string landscape: the swampland conjectures; Reid’s fantasy.

I Developing stochastic/ML algorithms to solve systems of nonlinear diophantine
equations (see work due to Fabian Ruehle).

2possible hints from recent works on NN invariances ala Taco Cohen, Risi
Kondor, and detecting symmetries by Sven Krippendorf and so on.



Machine Learning for Calabi–Yau Metrics



Related Work

Numerical Calabi–Yau metrics

I M. Headrick and T. Wiseman, Numerical Ricci-flat metrics on K3, Class.
Quant. Grav. 22 (2005) 4931–4960, [hep-th/0506129].

I S. Donaldson, Scalar curvature and projective embeddings, i, J. Differential
Geom. 59 (11, 2001) 479–522.

I S. K. Donaldson, Some numerical results in complex differential geometry, arXiv
preprint math/0512625 (2005).

Analytic K3 metrics

I S. Kachru, A. Tripathy and M. Zimet, K3 metrics from little string theory,
1810.10540.

I S. Kachru, A. Tripathy and M. Zimet, K3 metrics, 2006.02435.



A machine learning case for Calabi–Yau metrics

There is now an increasing effort in employing Machine Learning to construct
approximations to Ricci flat Calabi–Yau metrics, an essential ingredient in connecting
String theory to four dimensional particle physics.

I Jejjala, Mayorga Peña, CM: Neural Network Approximations for Calabi–Yau
Metrics, [2012.15821].

I Larfors, Lukas, Ruehle, Schneider: Learning Size and Shape of Calabi-Yau
Spaces, [2111.01436].

I Anderson, Gerdes, Gray, Krippendorf, Raghuram, and Ruehle: Moduli-dependent
Calabi-Yau and SU(3)-structure metrics from Machine Learning, [2012.04656].

I Douglas, Lakshminarasimhan, and Qi: Numerical Calabi-Yau metrics from
holomorphic networks, [2012.04797].

I Ashmore, He and Ovrut, Machine Learning Calabi–Yau Metrics, Fortsch. Phys.
68 (2020) 2000068, [1910.08605]



Unification

String theory is the only known consistent theory of quantum gravity.

I Postulates (6) extra-dimensions of space.

I Relies on a fundamental symmetry between matter particles and force carriers,
called supersymmetry (SUSY).

String theory is also an organising principle for mathematics.



String Phenomenology

Superstring theory supplies an architectural framework for obtaining the real world
from a consistent theory of quantum gravity.3

3
Illustration is inspired from a talk by Liam McAllister.



String Phenomenology

The Holy grail: Embed the Standard Model (SM) of particle physics within the
framework of string theory.

1. Reproduce the particle content, coupling constants, masses of particles of the
Standard Model.

2. Explain the origin of discrete symmetries of SM that help explain unobserved
couplings, the long lifetime of the proton, etc.

3. Other challenges: Explain fine tuning, supersymmetry breaking.

4. No such model till date, but there has been considerable progress building
semi-realistic models over last decade or so.



Unification: Compactification

String theory unifies gravity and QM and reduces to the SM in the low energy limit,
via an intermediate GUT.

String Theory −→ GUT −→ SM

This is called string ‘compactification’ where the low energy theory, SM, is recovered
by hiding away or compactifying over the extra-dimensions of space.

This places severe geometrical constraints on the extra-dimensions of string theory,
called ‘Calabi-Yau’ manifolds.



Calabi-Yau Manifolds: A centerpiece in String theory

I CY compactifications of the Heterotic String is one of the most promising
avenues for string model building.

I The space-time for the effective field theory is the direct product: M4×X6,
where M4 is a maximally symmetric space.

I If X6 is Riemannian, irreducible and we demand N = 1 supersymmetry in the
4-dimensional theory (SM), then Hol(X6) = SU(3). Do such manifolds exist?

I Calabi conjecture (proved by Yau): An n-dimensional complex Kähler manifold
with vanishing first Chern class admits a metric with SU(n) holonomy. This
leads us to the class of Calabi-Yau manifolds. Thus X6 is a CY threefold.



Standard Model from topology of Calabi–Yau geometries

I In the simplest setting, Ngen ∼ Euler characteristic (a topological invariant) of
the extra-dimensions.

I More generally, bundle valued cohomology groups compute particle spectrum of
a string derived Standard Model of particle physics.

I Heterotic string models can be obtained by considering a compactification space
that is a Calabi–Yau threefold (X) admitting a vector bundle V −→ X .



Non-standard embeddings

String Theory −→ GUT −→ SM

I Variations of the 10-dimensional heterotic effective action leads to stringent
constraints on the bundle V . Additional constraints come from demanding an
’anomaly free’ theory.

I These constraints are topological in nature. Satisfying such conditions lead to
an anomaly free theory and involves stable bundles.

I In order to obtain a GUT group that is closer to the SM gauge group, one must
choose the structure group G of the vector bundle V that is larger than SU(3),
the structure group of the tangent bundle TX of the Calabi–Yau X.

I Given a vector bundle V with structure group G ⊂ E8, the GUT group this leads
to is the commutant of G in E8.

I The GUT group should contain the standard model gauge group
SU(3)× SU(2)× U(1), and admit complex representations.

The breaking of the E8 happens as follows:

E8 −→ GUT × G

rk(V ) = 4 : E8 −→ SO(10) × S(U(1)×4)

rk(V ) = 5 : E8 −→ SU(5) × S(U(1)×5)



Line Bundle Models

I Prior to c.2008, only a handful of string derived standard models existed.

I Since then tens of thousands of semi-realistic string standard models were
constructed by choosing the vector bundle V −→ X to be a sum of line bundles
(Anderson, Gray, Lukas, He, Constantin, etc.).

V =
n⊕

a=1

La, where

n is the rank of the bundle.

I V is then completely specified by h1,1(X )× rk(V ) integers



A vanilla string model

Example: A CICY ⊂ (P1)×4×P3 with h1,1 = 5 Constantin, Lukas and CM

X =

P1

P1

P1

P1

P3


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
1 1 1 1


5,37

−64

.

Γ = Z4oZ4 , V =


−36 −1 9 28

1 −5 4 0
1 −1 −1 1
1 0 0 −1
−1 1 0 0


This is one of 46,534 string models that lead to a GUT with gauge group SO(10) and
reproduces many features of the SM. Note that none of these models give a complete
picture, but simply lead to semi-realistic string models that agree with the Standard
Model in broad terms.



Why study Calabi–Yau metrics?

I Luckily, topology on its own is a sufficiently powerful tool to enable string model
building.

I To go beyond an analysis of the particle spectrum (and break supersymmetry in
a controlled manner), we must obtain the Kähler potential, that leads to the
metric on a Calabi–Yau.

I Knowledge of the metric will ultimately lead to computing the mass of
fundamental particles in the context of String theory.

I Determining physical quantities from first principles therefore requires an
understanding of the geometry as well as the topology of Calabi–Yau spaces.



Many possible Calabi-Yau geometries: The Hodge Plot

Different approaches to string theory involve different geometries: Manifolds with G2

holonomy, CICY threefolds, hypersurfaces in reflexive polytopes, CY-fourfolds.
which give the appearance of a fractal. This is the plot shown in Figure 1. Each point of the plot

corresponds to one or several reflexive polytopes from the Kreuzer-Skarke list, as illustrated in

Figure 2, in which the colour code indicates the occupation number of each site.
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Figure 2: The Hodge plot for the list or reflexive 4-polytopes. Di↵erent colours correspond to di↵erent
occupation numbers: the points in the top region of the plot correspond to one or very few reflexive polytopes,
while the blue region in the vicinity of the tip contains points with occupation numbers of order of one million.

The structure of this plot has been mysterious for more than two decades. The distribution

of points in the top region of the plot is symmetric with respect to the axes � = ⌥480. Inspired

by the fact that the exact symmetry around the axis � = 0 corresponds to mirror symmetry, we

name this partial symmetry ‘half-mirror symmetry’. Another striking feature of the plot is that

in the top middle region, the points are arranged into a grid-like structure.

In Chapter 2, we find that the generic features of the plot, as well as the structures mentioned

above are explained as an overlapping of several webs formed by repeating a fundamental structure

along many translation vectors. These webs correspond to Calabi-Yau manifolds fibered over CP1

for which the fiber is a K3 manifold. Di↵erent types of K3 fibers give rise to distinct webs. Along

7

CY threefolds: x-axis: Euler Characteristic, y-axis: ‘Height’ (h1,1 + h2,1)

473,800,776 geometries



Complete Intersection Calabi-Yau Manifolds

The following is the form of a configuration matrix of a Complete Intersection
Calabi–Yau manifold or a CICY:

P n1

...

P nm


q1

1 . . . q1
n

...
. . .

...

qm1 . . . qmn


h1,1(X ), h2,1(X )

χ(X )

The CICY is given by the vanishing locus of a set of n homogeneous polynomials over
a product of m complex projective spaces. Vanishing 1st Chern class implies sum of
each row is equal to the number of co-ordinates in the projective space,∑

a

qra = nr + 1, ∀r ∈ {1, . . . ,m}

Example: X = P4[5] : X = {x ∈ P4 |
4∑

a=0

cax
5
a = 0}



Calabi-Yau Manifolds: Examples

CP1

CP1

CP1

CP1


2
2
2
2


4,68

−128

CP1

CP1

CP1

CP1

CP7


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1


5,37

−64

Vanishing 1st Chern class implies sum of each row is equal to the number of
co-ordinates in the projective space.



Conifold Transitions between CICYs



Calabi–Yau manifolds: General Remarks

As a complex Kähler manifold, the metric of a CY M is a Hermitian matrix that can
be derived from a Kähler potential K(z, z̄):

gab̄ = ∂a∂b̄K(z, z̄) .

The metric can be used to construct the Kähler form as

J =
i

2
gab̄ dz

a ∧ dz̄ b̄ .

This is a closed (1, 1)-form. The corresponding Ricci tensor is given by:

Rab̄ = ∂a∂b̄ log det g .

A Calabi–Yau admits a metric with vanishing Ricci curvature. This metric is unique in
each Kähler class. Till date, no analytic expression has been found for a Ricci-flat
metric of a Calabi–Yau threefold.



Calabi–Yau manifolds: Case studies

K3 : z4
1 + z4

2 + z4
3 + z4

4 = 0 ⊂ P3 ,

Fermat quintic : z5
1 + z5

2 + z5
3 + z5

4 + z5
5 = 0 ⊂ P4 ,

Dwork family : z5
1 + z5

2 + z5
3 + z5

4 + z5
5 − 5ψz1z2z3z4z5 = 0 ⊂ P4 , ψ5 6= 1 .

Tian–Yau :

[
P3 3 0 1
P3 0 3 1

]14, 23

χ=−18

⇐⇒


αijkzizjzk = 0 ,
βijkwiwjwk = 0 ,
γ ijziwj = 0 .

A freely acting Z3 quotient of the Tian–Yau yields a Calabi–Yau manifold with
χ = −6 [G. Tian and S. Yau; B. R. Greene, K. H. Kirklin, P. J. Miron and G. G. Ross,
1986-1987]



Calabi–Yau manifolds: Case studies

Tian–Yau :

[
P3 3 0 1
P3 0 3 1

]14, 23

χ=−18

⇐⇒


αijkzizjzk = 0 ,
βijkwiwjwk = 0 ,
γ ijziwj = 0 .

Schoen :

 P1 1 1
P2 3 0
P2 0 3

19,19

χ=0

'


P1 0 0 0 0 1 1
P2 1 1 0 0 1 0
P2 1 1 0 0 1 0
P2 0 0 1 1 0 1
P2 0 0 1 1 0 1


19,19

χ=0

.



Methodologies for Calabi–Yau metrics

I Donaldson’s algorithm

I Neural networks for PDEs

I Kähler–Ricci Flow

I Energy Functionals



I. Neural Networks for PDEs

I Generating points uniformly over a geometry.

I Benchmarks for a flat metric: flatness measures and loss function.

I Machine Learning architectures.

I Machine driven approximate Ricci-flat metrics of Calabi–Yau manifolds.



Generating points uniformly distributed on a Calabi–Yau

Case: CICY Hypersurfaces ⊂ Pn, e.g., Fermat Quintic, Dwork family; also, quartic K3,
complex T 2.

I Lines in Pn are uniformly distributed with respect to the SU(n + 1) symmetry of
the Fubini–Study metric.

I Sampling the manifold with points at the intersection of each line with the
hypersurface allows one to evaluate numerical integrations in a straightforward
manner, taking the Fubini– Study metric as a measure of point distribution.



Generating points uniformly distributed on a Calabi–Yau

(3,2) (2,3)(1,2)

(3,1)

(1,3)

(2,1)

(3,2) (2,3)(1,2)

(3,1)

(1,3)

(2,1)



Neural Network Architecture



Flatness measures and Loss functions

Loss = ασσ + ακκ+ αµµ .

where,

σ =
1

VolΩ

∫
M

dVolΩ

∣∣∣∣1− VolΩ

VolJ
·

Jn

Ω ∧ Ω̄

∣∣∣∣ .

κ =
Vol

1/n
J

VolΩ

∫
M

dVolJ |k|2, |k|2 =
∑
a,b,c̄

|kabc̄ |2, kabc̄ = ∂agbc̄ − ∂bgac̄ .

µ =
1

Np!

∑
m′,l′

∑
m.l 6=m′,l′

1

VolΩ

∫
M

dVolJ |M(m′, l ′;m, l)|2,

where M captures the disagreement of the metric over different patches.

These three measures capture Ricci flatness (σ), Kählericity (κ), and agreement over
different patches (µ).



Results: Fermat Quintic



Results: Dwork Family of Quintics



Results: Tian–Yau



II. Ricci Flow: A geometric picture



II. Kähler–Ricci Flow

I Ricci flow gives a partial differential equation for a Riemannian metric g .

I It was introduced by Hamilton and famously employed by Perelman to prove the
Poincaré conjecture4 in three dimensions.

I The differential equation tells us that

∂

∂λ
gab̄(λ) = −Ricab̄(λ) =

∂2

∂za∂z̄ b̄
log det g

I Perelman functional:

F(g , f ) =

∫
M

dµ e−f
(
R + |∇f |2

)
where R is the scalar curvature.

4Every simply connected, closed 3-manifold is homeomorphic to the
3-sphere.



The Fubini-Study metric:

The Fubini Study metric described below is a starting point for Kähler Ricci flow.

K(z, z̄) =
1

π
log(|z|2) , |z|2 =

n+1∑
a=1

zaz̄ ā .

This potential leads to the following metric:

gab̄(z, z̄) =
|z|2δab̄ − z̄az̄ b̄

π|z|4
.



III. Energy Functional Approach: Real Torus

1 2 3 4 5 6
x2

-4

-2

2

4

curv



Future Directions

I Emulating Kähler Ricci Flow on Neural Networks

I Energy Functional Approaches

I How Calabi–Yau metrics transform under geometric transitions

I Discovering flat metrics on other CY constructions



Thank you!
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