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Determining the 4D theory in string compactification

Physical quantities in low energy string theory depend on the metric and

gauge connections in the extra dimensions.

For example:

Yukawa couplings in Heterotic string theory descend from a term in the

10-dimensional action of the form ∼
∫
d10√−g ψ̄Aψ. Normalization of

fields and coefficients of the superpotential depend on g .

I.e. Defining the perturbative theory around a background:

Ab = A0
b + φI v x

IbTx + . . .

where vI is the bundle valued harmonic 1-form on compact 6D space X

which counts the multiplicity of the 4D fields φI .

E.g. Superpotential tri-linear coupling λIJKφ
IφJφK is given by the integral

λIJK ∼
∫
X

vI ∧ vJ ∧ vK ∧ Ω
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Particle masses/couplings

Interested in

Particle masses/couplings.

Textures/hierarchies: Standard model (Heavy top quark), SUSY “mu

problem” (want to forbid a mass term allowed by gauge symmetry, i.e.

µHdHu), Forbid rapid proton decay operators, etc...

Major obstacle: Matter field Kahler potential unknown except for special

cases.

GIJ =
1

2(Vol(X ))

∫
X

vI ∧ ?V vJ

Easiest class of solutions for X a complex, Kahler manifold: Ricci flat

metric ⇒ i.e. a Calabi-Yau manifold

How to determine the metric and the connection?

Only current viable approach via ⇒ numeric approximation.
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The Donaldson Algorithm

Idea: Use projective embeddings to generate simple metrics that can be

parametrically tuned to the Ricci-flat solution.

Kodaira embedding: Given an ample line bundle L on X then an
embedding

ik : X → Pnk−1
, (x0, . . . , x2) 7→

[
s0(x) : . . . : snk−1(x)

]
exists for all Lk = L⊗k with k ≥ k0 for some k0, where sα ∈ H0(X ,Lk).

What do we know about metrics on Pn? Fubini-Study:

(gFS)i j̄ =
i

2
∂i ∂̄j̄KFS where KFS =

1

π
ln
∑
i j̄

hi j̄zi z̄j̄

and hi j̄ is a non-singular, hermitian matrix.

FS metric restricted to X is not Ricci-flat. But...
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Generalize: Kh,k = 1
kπ ln

∑nk−1
α,β̄=0

hαβ̄sαs̄β̄ = ln ||s||2h,k

hαβ̄ is a hermitian fiber metric on L⊗k .

Such Kähler potentials are dense in the moduli space (Tian)

Fixed point of Donaldson’s “T-operator” ↔ “balanced metric”.

T (h)αβ̄ = nk
VolCY (X )

∫
X

sα s̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
dVolCY

Theorem (Donaldson)

For each k ≥ 1, the balanced metric, h, on L⊗k exists and is unique. As k →∞,
the sequence of metrics

g
(k)

i j̄
=

1

kπ
∂i ∂̄j̄ ln

nk−1∑
α,β̄=0

hαβ̄sα s̄β̄

on X converges to the unique Ricci-flat metric for the given Kähler class and

complex structure.
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A new approach

Existing numeric implementations of Donaldson’s algorithm (Douglas et

al, Ovrut et al). Computationally intensive. (Accurate enough? Don’t

know...)

Moduli dependence difficult to obtain.

New Approach ⇒ Machine Learning . What we did:

1 Supervised learning of moduli dependence of Calabi-Yau metrics using

the Donaldson algorithm to generate training data.

2 Direct learning of moduli dependent Calabi-Yau metrics both using the

metric ansatz and without it.

3 Direct learning of metrics associated to SU(3) structures with torsion.

I’ll give a brief flavor of these results... (see also, (Douglas et al), (Jejjala,

et al))(See more recent developments in talks of Fabian/Robin...).
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Preliminaries

One definition of a Calabi-Yau three-fold: A complex 3-fold admitting a

nowhere vanishing real two-form, J, and a complex three-form, Ω, such

that:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω

dJ = 0 dΩ = 0

Metric is related to the two form as igab̄ = Jab̄

Example CY manifold: “Quintic” hypersurface: X = P4[5]

e.g. p(~z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + ψz0z1z2z3z4 = 0

The holomorphic (3, 0) form can explicitly constructed for such manifolds
(Candelas, et al).

Ω =
1

∂pψ(~z)/∂zb

∧
c=0,...3,
c 6=a,b

dzc
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Direct Learning of the Kähler Potential

The balanced metric output by Donaldson’s algorithm at given finite k is

not necessarily the most accurate approximation to the Ricci-flat metric -

maybe we can do better?

Can generate networks to find the parameters that are trained directly

using a loss such as:

LMA =

∣∣∣∣1 +
4i

3

J3

Ω ∧ Ω

∣∣∣∣
C.f.: Headrick and Nassar (although note that we are obtaining moduli

dependent results and using ML). Network Architecture:

Layer Number of Nodes Activation Number of Parameters

input 17 – –

hidden 1 100 leaky ReLU 1800

hidden 2 100 leaky ReLU 10 100

hidden 3 100 leaky ReLU 10 100

output d2 identity 101 d2
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These networks were optimized for 0 ≤ |ψ| ≤ 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1 Donaldson k = 6

Donaldson at k = 12, = 0

DenseModel-1 DenseModel-3

101 102 103

| |

10 1

100

Accuracy for
DenseModel-1
DenseModel-2
Donaldson k=6
Extrapolation from = 100

(shaded region denotes extrapolation of the networks).

Note Donaldson algorithm with k = 12 takes order days to run even for

the single case of ψ = 0. This network at k = 6 takes only minutes and

gives comparable accuracy for a whole range of ψ.

We do better than Donaldson Alg. at k = 6 and that this improvement

extends up to |ψ| ' 175, nearly a factor of 2 beyond the regime used

during training.
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Direct learning of the metric

Instead of learning parameters in an ansatz for the Kahler potential we

can try to learn the CY metric directly.

Why try?

Perhaps we can improve performance by not being tied to an ansatz at

fixed k.

We will be able to generalize this approach to more complicated

geometries.

One disadvantage:

We now need loss functions to check that the metric is globally well

defined and Kahler! We use L = λ1LMA + λ2LdJ + λ3Loverlap

Here LMA is the loss described before and we add to this

LdJ =
1

2
||dJ||1

Loverlap =
1

d

∑
k,j

∣∣∣∣g (k)
NN(~z)− Tjk (~z) · g (j)

NN(~z) · T†jk (~̄z)
∣∣∣∣

n
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Input: Re(zi ), Im(zi ) (homogeneous coords describing pt in CY)

Re(ψ), Im(ψ). Output: d2 real and imaginary parts of a metric at point.

To give a concrete example: optimized at ψ = 10 on a data set of 10, 000

points. We split the points according to train:test=90 : 10 and we train

for 20 epochs.

Accuracy reaches same level as Donaldson Alg. at k = 5 (we expect more

points and better architecture will easily improve this).

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

0 2 4 6 8 10 12 14 16 18 20

epoch

101

102

103

lo
ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Left: Optimizing the NN with all three losses. Middle: Optimizing the NN without Kähler loss

(i.e. λ2 = 0). Right: Optimizing the NN without overlap loss (i.e. λ3 = 0).
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Learning SU(3) structures from an anzatz

Important reason to directly learn the metric: Can be generalized to

non-Kähler geometry!

One important class of geometries for N = 1 compactifications: SU(3)

structure manifolds

These are six-manifolds with a nowhere vanishing two form J and three

form Ω obeying the same algebraic properties as the Calabi-Yau threefold

case:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω

But with different differential properties...

An SU(3) structure can be classified by its torsion classes:

dJ = −3

2
Im(W1Ω) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W5 ∧ Ω ,
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Where torsion classes are given the defining forms:

W1 = −1

6
iΩydJ =

1

12
J2ydΩ , W4 =

1

2
JydJ , W5 = −1

2
Ω+ydΩ+

Given string theories place different constraints on the torsion classes for

there to be an associated solution to the theory of the type we want.

E.g. heterotic string theory: W1 = W2 = 0, W4 = 1
2W5 = dφ, W3 free.

Note that a CY structure is a special case: Wi = 0 ∀i = 1, . . . 5.

Need to start with some well-controlled/simple example.

Observation: Some CY manifolds admit not only Ricci-flat metrics, but

other SU(3) structures as well.
E.g. (generalization of work by Larfors, Lukas and Ruehle)

J =

h1,1(x)∑
i=1

aiJi Ω = A1Ω0 + A2Ω̄0

The ai are real functions and A1 and A2 are complex functions. Quintic
e.g.

a1 =
1

π3

|∇p|2

σ4
, A1 = a2

1 , A2 = 0 , (where σ =
4∑

a=0

|za|2 )
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Can use the same losses as in the Calabi-Yau case, then, with the

exception of replacing the Kahler loss by the following.

LW4 = ‖dJ − dln(a1 ∧ J)‖n

We ran this for the ψ = 10 quintic, using multiplicative boosting from gFS .

0 2 4 6 8 101214161820222426283032343638404244464850

epoch
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ss

Average loss per epoch

Losses
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Total
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On to connections...

In the heterotic context, it is natural to ask how much of this approach

can be readily applied to gauge fields ⇒ i.e. Hermitian Yang-Mills

connections?

For stable bundles can encode connection via a Hermitian structure, i.e.

fiber metric G = G † ⇒ A = G−1∂G

A solution to HYM ↔ a Hermitian bundle metric, G , such that

µ(V ) · 1 = g i j̄Fi j̄ = g i j̄ ∂̄j̄Ai = g j̄ i ∂̄j̄(G
−1∂iG )

G is called Hermitian-Einstein.

G induces an inner product on sections, sα ∈ H0(X ,V ) of the bundle:

< sα|sβ >=

∫
X

(
sbβGbās̄

ā
ᾱ

)
dVol
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Generalized Donaldson Algorithm: Computing Connections

Old idea: Generalize line bundle algorithm to rank n bundle

Metrics: Line bundle: Lk defines an embedding of X into Pnk−1 via global

sections sα ∈ H0(X ,Lk):

x → [s0(x) : · · · : snk−1(x)]⇒ ik : X → Pnk−1 = G (1, nk − 1)

where nk = h0(X ,Lk).

Connections: Define an embedding via the global sections of a twist of

some holomorphic vector bundle, V, with non-Abelian structure group. A

map:

x →


S1

1 (x)

.

.

.

Sn
1 (x)

 : · · · :

S1
Nk

(x)

.

.

.

Sn
Nk

(x)


⇒ ik : X → G (n,Nk − 1)

Sa
α are global sections of V⊗ Lk , α = 0 . . .Nk − 1 = h0(X ,V⊗ Lk).
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Generalized Donaldson Algorithm

Note: We need to twist V so that it has global sections! (H0(V ) = 0 for

stable SU(n) bundles).

As before, choose a starting ansatz for fiber metric on V⊗ Lk :

(G−1)ab̄ =
∑Nk−1
α,β=0 H

αβ̄Sa
α(S̄)b̄

β̄

Inner product on the space of sections, Sa
α, given by

< Sβ |Sα >=
Nk

VolCY

∫
X

Sa
α(G ab̄)−1S̄ b̄

β̄dVolCY =
Nk

VolCY

∫
X

Sa
α(Sa

γH
γδ̄ S̄ b̄

δ̄)−1S̄ b̄
β̄dVolCY .

Generalized T-operator

T (H)αβ̄ =
Nk

VolCY

∫
X

Sα
(
S†HS

)−1

S̄β̄dVolCY ,

Note when V is a line bundle this reduces to the metric T-operator!

If V stable → generalized T-operator has a fixed point for each k.
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Theorem (Wang)

Let V be a rank n, Gieseker stable bundle. If Gk = G (k) ⊗ G−kL → G∞ as k →∞,

then the metric G∞ solves the Hermitian-Einstein equation

g i j̄Fi j̄ = (µ) 1n×n

where G (k) is the fiber metric on V⊗ Lk and GL is the metric on L.

Error measure: g i j̄Fi j̄ ∼


λ1

λ2

. . .

λn

 (= 0 ?)

Integrated error measure: τ(AV) = 1
2π

kg
Volkg rank(V)

∫
X

(∑
|λi |
)√

g d2dx

Implementation of generalized algorithm: Anderson, Braun, Ovrut
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Figure: Convergence for stable, semi-stable and unstable bundles
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A better way to apply ML techniques to a pair (gµν,Aµ)?

Computing CY metric, then HYM connection is laborious. Question: Can

we group the two computations into one?

Several approaches to this... Basic idea: Composite metric on total space

of the bundle

E.g.

ḡAB ∼

 gµν(x)− g̃mn(y)Bµ
mBν

n Bµ
n

Bν
m −g̃mn(y)


With Bµ

n = ξna(y)Aa
µ(x) and ξ a Killing vector of the compact fiber

space (e.g. SU(N) → CPN−1 fiber with infinitesimal isometries

yn → yn + ξna (y)εa(x) ⇒ gauge transformations)

Idea: Kaluza-Klein type metric (but over compact directions only in

heterotic).
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Several choices for how to build a total space and ḡAB

E.g. principle bundle (e.g. for SU(N), compact fiber is group manifold of

dimension N2 − 1)

E.g. projectivized vector bundle M = P(π : V → X ). Comes equipped

with a canonical line bundle, LM such that π∗LM = V .

For an SU(N) vector bundle, fibers are CPN−1 as above.

Nice results known for properties of ḡAB in this case.

Thm (Hong): If X admits a constant scalar curvature (CHSC) metric and

V is stable, thenM also admits a CHSC metric in the class [FL + kπ∗ωX ].

Uniqueness and iff? True in some circumstances...

Central idea: Apply Donaldson anzatz to Hermitian fiber metric of

(twists) of LM ⇒ similar ML implementation to CY case.

Lara Anderson (Virginia Tech) CY and SU(3) Structure Metrics and Stable Bundles String Data 2021 21 / 23



Actually Strominger system solutions?

Interesting extension: Presence of generic HYM bundle (with V 6= TX )

deforms metric on X away from Ricci-flat one ⇒ Strominger system

solution (i.e SU(3) structure).

Can apply ML techniques directly to imposing the vanishing of the

β-functions in this case, rather than solve for X CY first, then HYM.

Use similar approaches for non-Kähler metrics (i.e. Loss functions include

transition functions, etc).

Greater accuracy for the matter field Kähler potential?
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Results and Future Work

Control of the metric is necessary to specify the 4D theory in

compactification ⇒ ML techniques can provide a powerful new tool.

In particular, we have provided the first numeric approx. to SU(3)

structure metrics.

We are exploring novel ways to package – and then approximate – the

metric and connection data in a heterotic compactification.

Open questions: What next? ⇒ Pushing the control of the heterotic

effective theory further (i.e. matter field Kähler potentials, moduli

stabilization scenarios, etc)
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