CY and SU(3) Structure Metrics and Stable Bundles

Lara B. Anderson

Virginia Tech

Work done in collaboration with:

J. Grav (VT), M.Gerdis, S. Krippendorf (LMU),

N. Raghuram (VT), and F. Ruehle (CERN) (arXiv:2012.04656)

D. Bloodworth, J. Gray and N. Tompkins (VT) (In progress)

String Data 2021

December 16th, 2021

Determining the 4D theory in string compactification

- Physical quantities in low energy string theory depend on the metric and gauge connections in the extra dimensions.
- For example:
 - Yukawa couplings in Heterotic string theory descend from a term in the 10-dimensional action of the form $\sim \int d^{10} \sqrt{-g} \bar{\psi} A \psi$. Normalization of fields and coefficients of the superpotential depend on g.
 - I.e. Defining the perturbative theory around a background:

$$A_b = A_b^0 + \phi^I v_{Ib}^x T_x + \dots$$

where v_l is the bundle valued harmonic 1-form on compact 6D space X which counts the multiplicity of the 4D fields ϕ^l .

• E.g. Superpotential tri-linear coupling $\lambda_{IJK}\phi^I\phi^J\phi^K$ is given by the integral

$$\lambda_{IJK} \sim \int_X v_I \wedge v_J \wedge v_K \wedge \Omega$$

Particle masses/couplings

- Interested in
 - Particle masses/couplings.
 - Textures/hierarchies: Standard model (Heavy top quark), SUSY "mu problem" (want to forbid a mass term allowed by gauge symmetry, i.e. $\mu H_d H_u$), Forbid rapid proton decay operators, etc...
- Major obstacle: Matter field Kahler potential unknown except for special cases.

$$G_{IJ} = \frac{1}{2(Vol(X))} \int_X v_I \wedge \overline{\star}_V v_J$$

- Easiest class of solutions for X a complex, Kahler manifold: Ricci flat metric \Rightarrow i.e. a Calabi-Yau manifold
- How to determine the metric and the connection?
- Only current viable approach via \Rightarrow numeric approximation.

The Donaldson Algorithm

- Idea: Use projective embeddings to generate simple metrics that can be parametrically tuned to the Ricci-flat solution.
- Kodaira embedding: Given an ample line bundle $\mathcal L$ on X then an embedding

$$i_k: X \to \mathbb{P}^{n_k-1}, \quad (x_0, \ldots, x_2) \mapsto [s_0(x): \ldots: s_{n_k-1}(x)]$$

exists for all $\mathcal{L}^k = \mathcal{L}^{\otimes k}$ with $k \geq k_0$ for some k_0 , where $s_\alpha \in H^0(X, \mathcal{L}^k)$.

• What do we know about metrics on \mathbb{P}^n ? Fubini-Study:

$$(g_{FS})_{i\bar{j}} = \frac{i}{2} \partial_i \bar{\partial}_{\bar{j}} K_{FS} \ \ \text{where} \ \ K_{FS} = \frac{1}{\pi} \ln \sum_{i\bar{j}} h^{i\bar{j}} z_i \bar{z}_{\bar{j}}$$

and $h^{i\bar{j}}$ is a non-singular, hermitian matrix.

• FS metric restricted to X is not Ricci-flat. But...

- Generalize: $K_{h,k} = \frac{1}{k\pi} \ln \sum_{\alpha,\bar{\beta}=0}^{n_k-1} h^{\alpha\bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}} = \ln ||s||_{h,k}^2$
- $h^{\alpha\bar{\beta}}$ is a hermitian fiber metric on $\mathcal{L}^{\otimes k}$.
- Such Kähler potentials are dense in the moduli space (Tian)
- Fixed point of Donaldson's "T-operator" \leftrightarrow "balanced metric".

$$T(h)_{\alphaar{eta}} = rac{n_k}{Vol_{CY}(X)} \int_X rac{s_{lpha} ar{s}_{ar{eta}}}{\sum_{\gammaar{\delta}} h^{\gammaar{\delta}} s_{\gamma} ar{s}_{ar{\delta}}} \mathrm{dVol}_{CY}$$

Theorem (Donaldson)

For each $k \geq 1$, the balanced metric, h, on $\mathcal{L}^{\otimes k}$ exists and is unique. As $k \to \infty$, the sequence of metrics

$$g_{iar{j}}^{(k)} = rac{1}{k\pi}\partial_iar{\partial}_{ar{j}}\ln\sum_{lpha,\,ar{eta}=0}^{n_k-1}h^{lphaar{eta}}s_lphaar{s}_{ar{eta}}$$

on X converges to the unique Ricci-flat metric for the given Kähler class and complex structure.

A new approach

- Existing numeric implementations of Donaldson's algorithm (Douglas et al, Ovrut et al). Computationally intensive. (Accurate enough? Don't know...)
- Moduli dependence difficult to obtain.
- New Approach \Rightarrow Machine Learning. What we did:
- Supervised learning of moduli dependence of Calabi-Yau metrics using the Donaldson algorithm to generate training data.
- ② Direct learning of moduli dependent Calabi-Yau metrics both using the metric ansatz and without it.
- Direct learning of metrics associated to SU(3) structures with torsion.
- I'll give a brief flavor of these results... (see also, (Douglas et al), (Jejjala, et al))(See more recent developments in talks of Fabian/Robin...).

Preliminaries

• One definition of a Calabi-Yau three-fold: A complex 3-fold admitting a nowhere vanishing real two-form, J, and a complex three-form, Ω , such that:

$$J \wedge \Omega = 0$$
 $J \wedge J \wedge J = \frac{3i}{4}\Omega \wedge \overline{\Omega}$ $dJ = 0$ $d\Omega = 0$

- Metric is related to the two form as $ig_{a\bar{b}} = J_{a\bar{b}}$
- \bullet Example CY manifold: "Quintic" hypersurface: $X=\mathbb{P}^4[5]$
- e.g. $p(\vec{z}) = z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 + \psi z_0 z_1 z_2 z_3 z_4 = 0$
- The holomorphic (3,0) form can explicitly constructed for such manifolds (Candelas, et al).

$$\Omega = \frac{1}{\partial p_{\psi}(\vec{z})/\partial z_b} \bigwedge_{\substack{c=0,\ldots,3,\\c\neq a,b}} dz_c$$

Direct Learning of the Kähler Potential

- \bullet The balanced metric output by Donaldson's algorithm at given finite k is not necessarily the most accurate approximation to the Ricci-flat metric maybe we can do better?
- Can generate networks to find the parameters that are trained directly using a loss such as:

$$\mathcal{L}_{MA} = \left| 1 + rac{4i}{3} rac{J^3}{\Omega \wedge \overline{\Omega}}
ight|$$

• C.f.: Headrick and Nassar (although note that we are obtaining moduli dependent results and using ML). Network Architecture:

Layer	Number of Nodes	Activation	Number of Parameters
input	17	_	_
hidden 1	100	leaky ReLU	1800
hidden 2	100	leaky ReLU	10 100
hidden 3	100	leaky ReLU	10 100
output	d^2	identity	$101 d^2$

• These networks were optimized for $0 \le |\psi| \le 10$

(shaded region denotes extrapolation of the networks).

- Note Donaldson algorithm with k=12 takes order days to run even for the single case of $\psi=0$. This network at k=6 takes only minutes and gives comparable accuracy for a whole range of ψ .
- We do better than Donaldson Alg. at k=6 and that this improvement extends up to $|\psi| \simeq 175$, nearly a factor of 2 beyond the regime used during training.

Direct learning of the metric

- Instead of learning parameters in an ansatz for the Kahler potential we can try to learn the CY metric directly.
- Why try?
 - Perhaps we can improve performance by not being tied to an ansatz at fixed k.
 - We will be able to generalize this approach to more complicated geometries.
- One disadvantage:
 - We now need loss functions to check that the metric is globally well defined and Kahler! We use $\mathcal{L} = \lambda_1 \mathcal{L}_{MA} + \lambda_2 \mathcal{L}_{dJ} + \lambda_3 \mathcal{L}_{overlap}$
 - ullet Here \mathcal{L}_{MA} is the loss described before and we add to this

$$\begin{split} \mathcal{L}_{dJ} &= \frac{1}{2}||dJ||_1 \\ \mathcal{L}_{\text{overlap}} &= \frac{1}{d}\sum_{k,j}\left|\left|g_{\text{NN}}^{(k)}(\vec{z}) - \mathcal{T}_{jk}(\vec{z}) \cdot g_{\text{NN}}^{(j)}(\vec{z}) \cdot \mathcal{T}_{jk}^{\dagger}(\vec{z})\right|\right|_n \end{split}$$

- Input: $Re(z_i)$, $Im(z_i)$ (homogeneous coords describing pt in CY) $Re(\psi)$, $Im(\psi)$. Output: d^2 real and imaginary parts of a metric at point.
- To give a concrete example: optimized at $\psi=10$ on a data set of 10,000 points. We split the points according to train:test=90: 10 and we train for 20 epochs.
- Accuracy reaches same level as Donaldson Alg. at k=5 (we expect more points and better architecture will easily improve this).

Left: Optimizing the NN with all three losses. Middle: Optimizing the NN without Kähler loss (i.e. $\lambda_2 = 0$). Right: Optimizing the NN without overlap loss (i.e. $\lambda_3 = 0$).

Learning SU(3) structures from an anzatz

- Important reason to directly learn the metric: Can be generalized to non-Kähler geometry!
- One important class of geometries for $\mathcal{N}=1$ compactifications: SU(3) structure manifolds
- These are six-manifolds with a nowhere vanishing two form J and three form Ω obeying the same algebraic properties as the Calabi-Yau threefold case:

$$J \wedge \Omega = 0$$
 $J \wedge J \wedge J = \frac{3i}{4}\Omega \wedge \overline{\Omega}$

But with different differential properties...

• An SU(3) structure can be classified by its torsion classes:

$$dJ = -\frac{3}{2} \operatorname{Im}(W_1 \overline{\Omega}) + W_4 \wedge J + W_3$$

$$d\Omega = W_1 J \wedge J + W_2 \wedge J + W_5 \wedge \Omega,$$

• Where torsion classes are given the defining forms:

$$W_1 = -\frac{1}{6}i\Omega \Box dJ = \frac{1}{12}J^2 \Box d\Omega$$
 , $W_4 = \frac{1}{2}J \Box dJ$, $W_5 = -\frac{1}{2}\Omega_+ \Box d\Omega_+$

- Given string theories place different constraints on the torsion classes for there to be an associated solution to the theory of the type we want.
- E.g. heterotic string theory: $W_1 = W_2 = 0$, $W_4 = \frac{1}{2}W_5 = d\phi$, W_3 free.
- Note that a CY structure is a special case: $W_i = 0 \ \forall i = 1, ... 5$.
- Need to start with some well-controlled/simple example.
- Observation: Some CY manifolds admit not only Ricci-flat metrics, but other SU(3) structures as well.
- E.g. (generalization of work by Larfors, Lukas and Ruehle)

$$J = \sum_{i=1}^{h^{1,1}(x)} a_i J_i \qquad \qquad \Omega = A_1 \Omega_0 + A_2 \bar{\Omega}_0$$

 \bullet The a_i are real functions and A_1 and A_2 are complex functions. Quintic e.g.

$$a_1 = rac{1}{\pi^3} rac{|
abla p|^2}{\sigma^4} \;\;,\;\; A_1 = a_1^2 \;\;,\;\; A_2 = 0 \;, ext{(where} \;\; \sigma = \sum_{a=0}^4 |z_a|^2 \;)$$

• Can use the same losses as in the Calabi-Yau case, then, with the exception of replacing the Kahler loss by the following.

$$\mathcal{L}_{W_4} = \|dJ - dIn(a_1 \wedge J)\|_n$$

 \bullet We ran this for the $\psi=10$ quintic, using multiplicative boosting from $g_{FS}.$

On to connections...

- In the heterotic context, it is natural to ask how much of this approach can be readily applied to gauge fields ⇒ i.e. Hermitian Yang-Mills connections?
- For stable bundles can encode connection via a Hermitian structure, i.e. fiber metric $G=G^\dagger\Rightarrow A=G^{-1}\partial G$
- A solution to HYM \leftrightarrow a Hermitian bundle metric, G, such that

$$\mu(V) \cdot \mathbf{1} = g^{i\bar{j}} F_{i\bar{j}} = g^{i\bar{j}} \bar{\partial}_{\bar{i}} A_i = g^{\bar{j}i} \bar{\partial}_{\bar{i}} (G^{-1} \partial_i G)$$

G is called Hermitian-Einstein.

• G induces an inner product on sections, $s_{\alpha} \in H^0(X, V)$ of the bundle:

$$< s_{lpha} | s_{eta} > = \int_{X} \left(s^b_{eta} G_{bar{a}} ar{s}^{ar{a}}_{ar{lpha}}
ight) dVol$$

Generalized Donaldson Algorithm: Computing Connections

- Old idea: Generalize line bundle algorithm to rank *n* bundle
- Metrics: Line bundle: \mathcal{L}^k defines an embedding of X into \mathbb{P}^{n_k-1} via global sections $s_{\alpha} \in H^0(X, \mathcal{L}^k)$:

$$x \to [s_0(x):\cdots:s_{n_k-1}(x)] \Rightarrow i_k:X \to \mathbb{P}^{n_k-1}=G(1,n_k-1)$$

where $n_k = h^0(X, \mathcal{L}^k)$.

• Connections: Define an embedding via the global sections of a twist of some holomorphic vector bundle, V, with non-Abelian structure group. A map:

$$X o \left[egin{pmatrix} S^1_1(x) \ dots \ S^1_n(x) \end{pmatrix} dots & \cdot & \cdot & \cdot & \cdot & \cdot \\ S^n_1(x) \end{pmatrix} dots & \cdot & \cdot & \cdot & \cdot & \cdot \\ S^n_{N_k}(x) \end{pmatrix}
ight] \Rightarrow i_k : X o G(n, N_k - 1)$$

 S^a_{α} are global sections of $\mathcal{V} \otimes \mathcal{L}^k$, $\alpha = 0 \dots N_k - 1 = h^0(X, \mathcal{V} \otimes \mathcal{L}^k)$.

Generalized Donaldson Algorithm

- Note: We need to twist \mathcal{V} so that it has global sections! $(H^0(V) = 0$ for stable SU(n) bundles).
- As before, choose a starting ansatz for fiber metric on $\mathcal{V} \otimes \mathcal{L}^k$: $(G^{-1})^{a\bar{b}} = \sum_{\alpha,\beta=0}^{N_k-1} H^{\alpha\bar{\beta}} S^a_{\alpha}(\bar{S})^{\bar{b}}_{\bar{\beta}}$
- Inner product on the space of sections, S^a_{α} , given by

$$< S_{\beta} | S_{\alpha}> = \frac{N_k}{\operatorname{Vol}_{CY}} \int_X S_{\alpha}^a (G^{a\bar{b}})^{-1} \bar{S}_{\beta}^{\bar{b}} dVol_{CY} = \frac{N_k}{\operatorname{Vol}_{CY}} \int_X S_{\alpha}^a (S_{\gamma}^a H^{\gamma\bar{\delta}} \bar{S}_{\delta}^{\bar{b}})^{-1} \bar{S}_{\beta}^{\bar{b}} dVol_{CY} \ .$$

• Generalized T-operator

$$T(H)_{\alphaar{eta}} = rac{N_k}{\mathrm{Vol}_{CY}} \int_X S_{lpha} \Big(S^{\dagger}HS\Big)^{-1} ar{S}_{ar{eta}} dVol_{CY} \; ,$$

- Note when \mathcal{V} is a line bundle this reduces to the metric T-operator!
- If \mathcal{V} stable \rightarrow generalized T-operator has a fixed point for each k.

Theorem (Wang)

Let $\mathcal V$ be a rank n, Gieseker stable bundle. If $G_k=G^{(k)}\otimes G_{\mathcal L}^{-k}\to G_\infty$ as $k\to\infty$, then the metric G_∞ solves the Hermitian-Einstein equation

$$g^{i\bar{j}}F_{i\bar{j}}=(\mu)\,\mathbf{1}_{n\times n}$$

where $G^{(k)}$ is the fiber metric on $\mathcal{V} \otimes \mathcal{L}^k$ and $G_{\mathcal{L}}$ is the metric on \mathcal{L} .

- ullet Error measure: $g^{iar{j}}F_{iar{j}}\sim egin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix}$ (= 0 ?)
- Integrated error measure: $\tau(A_{\mathcal{V}}) = \frac{1}{2\pi} \frac{k_g}{Vol_{k_g} \, rank(\mathcal{V})} \int_X \left(\sum |\lambda_i|\right) \sqrt{g} \, d^{2d} x$ Implementation of generalized algorithm: Anderson, Braun, Ovrut

A better way to apply ML techniques to a pair $(g_{\mu\nu}, A_{\mu})$?

- Computing CY metric, then HYM connection is laborious. Question: Can we group the two computations into one?
- Several approaches to this... Basic idea: Composite metric on total space of the bundle
- E.g.

$$ar{g}_{AB} \sim \left(egin{array}{ccc} g_{\mu
u}(x) - ilde{g}_{mn}(y) B_{\mu}^{m} B_{
u}^{n} & B_{\mu}^{n} \ B_{
u}^{m} & - ilde{g}_{mn}(y) \end{array}
ight)$$

- With $B_{\mu}{}^{n} = \xi^{n}{}_{a}(y)A^{a}{}_{\mu}(x)$ and ξ a Killing vector of the compact fiber space (e.g. $SU(N) \to \mathbb{CP}^{N-1}$ fiber with infinitesimal isometries $y^{n} \to y^{n} + \xi^{n}{}_{a}(y)\epsilon^{a}(x) \Rightarrow \text{gauge transformations}$
- Idea: Kaluza-Klein type metric (but over compact directions only in heterotic).

- \bullet Several choices for how to build a total space and \bar{g}_{AB}
- E.g. principle bundle (e.g. for SU(N), compact fiber is group manifold of dimension N^2-1)
- E.g. projectivized vector bundle $\mathcal{M} = \mathbb{P}(\pi : V \to X)$. Comes equipped with a canonical line bundle, $\mathcal{L}_{\mathcal{M}}$ such that $\pi_* \mathcal{L}_{\mathcal{M}} = V$.
- For an SU(N) vector bundle, fibers are \mathbb{CP}^{N-1} as above.
- Nice results known for properties of \bar{g}_{AB} in this case.
- Thm (Hong): If X admits a constant scalar curvature (CHSC) metric and V is stable, then \mathcal{M} also admits a CHSC metric in the class $[F_L + k\pi^*\omega_X]$.
- Uniqueness and iff? True in some circumstances...
- Central idea: Apply Donaldson anzatz to Hermitian fiber metric of (twists) of L_M ⇒ similar ML implementation to CY case.

Actually Strominger system solutions?

- Interesting extension: Presence of generic HYM bundle (with $V \neq TX$) deforms metric on X away from Ricci-flat one \Rightarrow Strominger system solution (i.e SU(3) structure).
- Can apply ML techniques directly to imposing the vanishing of the β -functions in this case, rather than solve for X CY first, then HYM.
- Use similar approaches for non-Kähler metrics (i.e. Loss functions include transition functions, etc).
- Greater accuracy for the matter field Kähler potential?

Results and Future Work

- Control of the metric is necessary to specify the 4D theory in compactification ⇒ ML techniques can provide a powerful new tool.
- In particular, we have provided the first numeric approx. to SU(3) structure metrics.
- We are exploring novel ways to package and then approximate the metric and connection data in a heterotic compactification.
- Open questions: What next? ⇒ Pushing the control of the heterotic effective theory further (i.e. matter field Kähler potentials, moduli stabilization scenarios, etc)