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Nature or Nurture?

• Do we achieve excellence by breeding or training?


• Our work does NOT lend support to eugenics.


• Genetics and training are complementary; both lead to Rome, with different traits uncovered.
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Nature or Nurture?

• The landscape is vast, with as many as  [Ashok, Douglas]; [Denef, Douglas] to  [Taylor, Wang] 
states, making exhaustive searches or random sampling impractical. 


• Can stochastic optimization (e.g. GAs) and RL effectively search for desirable string vacua?


• Can these methods discover structures in the landscape? Are the structures discovered the same?

10500 10272,000
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Nature or Nurture?

• Can stochastic optimization (e.g. GAs) and RL effectively search for desirable string vacua?


• Flux vacua with desired  and : [Cole, Schachner, GS, ’19]; [Cole, Krippendorf, Schachner, GS, ’21]


• Intersecting brane models [Loges, GS, ’21]


• The above works uncover structures in the landscape. The structures found by GA and RL are complementary.

W0 gs
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Genetic Algorithms
• Start from a (random) initial population:


• Selection for breeding favors fitter 
individuals 


• Breeding via crossover (large changes).


• Mutations keep the population 
sufficiently diverse (small changes).


• Elitism ensures monotonic progress 
(optional).


• Rinse and Repeat.

Selection

Population

….…

Mutation

Repeat

Crossover

• Many string landscape problems can be phrased as inverse problems with discrete variables 
(fluxes, # branes), traditional gradient-descent-like optimizations are not directly applicable.
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An Example: Knapsack Problem
• The problem of finding vacua with energies within a specific range in the (toy) landscape (e.g. 

[Bousso, Polchinski];[Arkani-Hamed, Dimopoulos, Kachru]) is in the same universality class.


• Given a collection of items with weights and values, choose the subset which maximizes total 
value without exceeding the capacity of your knapsack. 


• An individual  consists of a chromosome  describing a choice of items and a fitness which 
characterizes  how well the problem is solved:

ζ χ
ℱ

Genetic algorithms: an example

Knapsack problem: given a collection of items with weights and values,

choose the subset which maximizes total value without exceeding the capacity

of your knapsack.

Weight 5 7 8 10 14

Value 10 17 23 28 40
Capacity: 20

An individual ⇣ consists of a chromosome � describing a choice of items and a

fitness F which characterizes how well the problem is solved:

�(⇣) = 11010 (w, v) = (22, 55) F(⇣) = 0

�(⇣) = 10100 (w, v) = (13, 33) F(⇣) = 33

�(⇣) = 00110 (w, v) = (18, 51) F(⇣) = 51

G. J. Loges Brane breeding 4 / 24
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An Example: Knapsack Problem
• Selection: binary tournament to select two “parents”


• Crossover: combine chromosomes of two parents to create child  


• Mutation: flip each bit with probability p 


• Efficiency can be seen from a slightly scaled-up version: If we have 16 objects with certain weight 
and values, we can reach an optimal solution after  generations for a population of size 50 
and  unique states visited, compared with brute-force search over  states.

𝒪(10)
𝒪(400) 216 = 65,536

Genetic algorithms: an example

I Selection: binary tournament to select two “parents”

I Cross-over: combine chromosomes of two parents to create child

100101110001

⌦ 011111011101

100101011101

000011100101

⌦ 001011000010

000011100010

I Mutation: flip each bit with probability p

110101111101 �! 110101101101

G. J. Loges Brane breeding 5 / 24

Genetic algorithms: an example

I Selection: binary tournament to select two “parents”

I Cross-over: combine chromosomes of two parents to create child

100101110001

⌦ 011111011101

100101011101

000011100101

⌦ 001011000010

000011100010

I Mutation: flip each bit with probability p

110101111101 �! 110101101101

G. J. Loges Brane breeding 5 / 24



GARY SHIU, THE STRING GENOME PROJECT

The String Landscape

Flux vector  
(subject to tadpole)

⃗N ∈ ℤm

solve equations of motion

=


minimizing potential

⃗ϕ = (ϕ1, …, ϕ4) ∈ ℝn “Physical Observables”, 
e.g. |W0 |

Inverse Problem: how to a) identify and b) characterize 
flux vectors with particular properties

calculate 
phenomenology

Challenge for string theory:

As many as  vacua [Taylor, Wang ’15], but only a 

few are phenomenologically interesting!
10272,000



The optimization algorithms

We provide in [Cole, Krippendorf, Schachner, GS, ’21] the first 
comparison between GAs and RL in a string theory context!

Selection

Population

We search for desirable string vacua via two optimization methods:

Genetic Algorithms (GAs) Reinforcement Learning (RL)

….…

We use a generalized version of the GA of 

[Cole, Schachner, GS: 1907.10072]

We apply the A3C RL implementation of 

[Krippendorf, Kroepsch, Syvaeri: 2107.04039]

Environment
Agent

Reward

State

Action

See also the recent work:

[Abel et al.: 2110.14029]

Stochastic search method based on natural selection processes:

Mutation

VS.

Repeat

Policy

Crossover

Basic ML tool to explore large environments:

To improve efficiency, we use the reward structure of [Krippendorf et al.] for RL and optimize hyperparameters 
in the GA by computing correlations with the mean average distance to the optimal solution.



Understanding the local structure of the string landscape

We performed a Principal Component Analysis (PCA) 
on the output of flux vectors in ℤ8

Apply GA+RL to find 
string vacua with 


|W0 | = 50,000 ± 1000

PCA on combined output

Task
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Understanding the local structure of the string landscape

We performed a Principal Component Analysis (PCA) 
on the output of flux vectors in ℤ8

Apply GA+RL to find 
string vacua with 


|W0 | = 50,000 ± 1000

PCA on combined output

Task

Two clusters as 
universal feature!

GA RL
PCA on individual output

Scaling with 
respect to  

reveals difference 
in GA/RL output

N1

Hint for discrete 
symmetry 

N5 → − N5



Correlations on the Landscape

• Some correlations are obvious as pairs of fluxes contribute as products to the tadpoles. 


• There are correlations unrelated to the tadpoles.


• Comparing individual correlation maps with the combined one can unpack how GA & RL 
find solutions.
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Take Away Messages
(1) We demonstrated that GAs and RL are efficient in finding desirable string vacua.


(2) Combining the output of GAs and RL allows to identify universal structures in the string landscape due 

to reduced sampling bias. 


(3) We provided evidence for previously unknown symmetries and correlations among special string vacua.

• Apply to tasks where reward structure becomes sparse such as .


• Determine structure behind and constraints on string theory solutions more systematically.


• Investigate more complex backgrounds and different phenomenological requirements. 

|W0 | ≪ 1

Future directions
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Breeding Realistic D-brane Models

48 D-Brane Phenomenology

Label Multiplicity Gauge Group Name

stack a Na = 3 SU(3) × U(1)a Baryonic brane
stack b Nb = 2 SU(2) × U(1)b Left brane
stack c Nc = 1 U(1)c Right brane
stack d Nd = 1 U(1)d Leptonic brane

Table 5: Brane content yielding the SM spectrum.

U(2)
U(1)

U(1)

U(3)

Gluon

Q

W

L e

R’ L

R

Ru  d

Figure 15: The building block to have just the standard model from intersecting D-branes. This is a set
of four stacks of D branes. The QCD stack contains three D-branes giving rise to U(3). The ‘left’ stack
contains two branes giving rise to U(2), the intersection of these two stacks contains the left-handed quarks.
Two more stacks, each containing one single brane, is needed to have the spectrrum of the standard model.

each a single brane. These four stacks of branes intersect in the compact six dimensions (plus
Minkowski) and at the intersections chiral fermions with the quantum numbers of the SM
appear. Thus, for example, the right-handed U-quarks occur at three different intersections
of the baryonic stack with the right stack (see fig.15).

Each stack of branes comes along with a unitary gauge group so that the initial gauge
group is SU(3)QCD × SU(2)L × U(1)a × U(1)b × U(1)c × U(1)d. A linear combination of
these four U(1)’s may be identified with the standard hypercharge and at some level the
rest of the U(1)’s should become massive. In the class of D6-brane models of ref.[109] and
D5-brane models of ref.[118] the charges of quarks and leptons with respect to these U(1)’s
is shown in Table 6. Here the asterisk denotes the ‘orientifold mirror’ of each given brane,
which must always be present in this kind of orientifold constructions (see [109] for details).
Note that U(1)a and U(1)d can be identified with baryon number and (minus) lepton number
respectively. On the other hand U(1)c can be identified with the third component of right-
handed weak isospin. Finally, U(1)b is an axial symmetry with QCD anomalies, very much
like a PQ-symmetry. It is easy to check from the above fermion spectrum that U(1)b and
3U(1)a−U(1)d linear combination have triangle anomalies whereas U(1)a+3U(1)d and Qc are
both anomaly-free. In fact the standard hypercharge may be written as a linear combination
of these two symmetries:

QY =
1

6
Qa −

1

2
Qc +

1

2
Qd . (66)

• Inverse problem of finding what discrete choices (#branes, how they wrap the internal space) 
would give phenomenologically desirable vacua (spectrum, couplings etc) [Loges, GS, ’21].
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Intersecting Brane Models
• Type IIA orientifolds with intersecting D6-branes (see [Blumenhagen, Cvetic, GS, Langacker, ’05];[Blumenhagen, 

Kors, Lust, Stieberger, ’07]; [Ibanez & Uranga’s book, ’12] for reviews) have desirable built-in features:


• Non-Abelian gauge groups on branes


• (Replicated) Chiral matter at brane intersections


• Timeline for the “harmonic oscillator” of intersecting brane models i.e. Type IIA on :


• , 4D compact models [Cvetic, GS, Uranga, ’01]x2


• “One in a billion” estimate [Gmeiner, Blumenhagen, Honecker, Lust, Weigand, ’06]


• Proof of finiteness [Douglas, Taylor, ’06]


• Reinforcement learning [Halverson, Nelson, Ruehle, ’19]


• Genetic Algorithm [Loges, GS, ’21]

T6/ℤ2 × ℤ2

𝒩 = 1
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Type IIA Orientifolds
• Type IIA orientifolds of Calabi-Yau : Weak coupling duals of  compactifications of M-theory. 

[See Lukas’s talk for investigation on heterotic models]


• Consider  where 


• Orientifold action  with 


• Two torus shapes are compatible with : 

X G2

X = T6/ℤ2 × ℤ2

Ωσ(−1)F σ : zi ↦ zi

σ

[Examples]
Diophantine equations, such as those arise in the models we consider below, are noto-

riously difficult to solve/understand (something about NP-completeness?). In such cases
where traditional gradient-descent-like methods are unavailable because of the discreteness
of the variables involved, genetic algorithms provide an alternative method to search for
solutions.

As the name suggests, genetic algorithms take inspiration from evolving biological sys-
tems to solve some problem via “natural selection”. A population of individuals becomes
fitter as cross-over (“breeding”) and random mutations improve offspring over the genera-
tions. If the goal is to maximize some fitness function quantifying how well the problem
is solved, the cross-over provides large changes which help to avoid local maximum, while
mutations provide small changes that fine-tune the optimization.

In this paper we consider intersecting brane configurations for the T6
/(Z2 ⇥Z2) orien-

tifold in Type IIA string theory. The set of consistency conditions on brane orientations
constitute a highly constrained Diophantine system of equations and inequalities. In ad-
dition, the search space is high-dimensional: for a fixed number of stacks, k, one needs to
specify 7k integers and doing a naïve brute-force search up to numbers of size L amounts
to checking O(L7k) combinations. Even for k . 5 this quickly becomes intractable. We
employ genetic algorithms to search for consistent models efficiently. More. . .

The remainder of this paper is organized as follows. In Sec. 2 we review the model of
interest and its consistency conditions. In Sec. 3 we describe the genetic algorithm used to
find intersecting brane models, including choices for the chromosome structure, cross-over
methods, mutations and fitness function. In Sec. 4 we present · · · . Finally, we conclude in
Sec. 5.

2 Review of T6/(Z2 ⇥ Z2) orientifold

In this section we review the features of Type IIA orientifold models relevant to our study
using genetic algorithms. We restrict attention to quantities that are topological in nature
and can be computed reliably without details of the compactification geometry. This in-
cludes the consistency conditions which ensure the theory is free of anomalies and preserves
4D N = 1 supersymmetry.

Our starting point is Type IIA string theory on the orbifold X
6 = T6

/(Z2 ⇥ Z2).
Writing zi for the complex coordinates of T6, the group Z2 ⇥ Z2 is generated by

✓ : (z1, z2, z3) 7! (z1,�z2,�z3) ,

! : (z1, z2, z3) 7! (�z1, z2,�z3) .
(2.1)

This projects out many moduli of the T6, in particular the 6-torus is now factorizable:
T6 = T2

⇥T2
⇥T2. Modding out by the orientifold action ⌦�(�1)F , where ⌦ and (�1)F are

world-sheet parity and fermion number, respectively, and � acts by complex conjugation on
each T2, introduces O6-planes at the fixed points of the involution. These carry R-R charges
that must be canceled by the introduction of D6-branes (along with their orientifold images).
Writing [⇧O6] for the total homology class of the O6-planes, [⇧a] for the homology class of

– 2 –

↵i

�i
↵i

�i

Figure 1: The two torus shapes (rectangular/untilted and tilted) compatible with the
orientifold projection. The fundamental 1-cycles ↵i and �i are shown in red and blue.

a stack of Na D6-branes and [⇧a0 ] for its orientifold image, the R-R tadpole cancellation
condition is X

a

Na
�
[⇧a] + [⇧a0 ]

�
� 4[⇧O6] = 0 . (2.2)

It is convenient to expand all 3-cycles in terms of a symplectic basis of H3(X6) = H
+
3 (X6)�

H
�
3 (X6), e.g.

[⇧a] =
X

I

� eXI
a [⇡

+
I ] +

eY I
a [⇡

�
I ]
�
, (2.3)

where [⇡+
I ] 2 H

+
3 (X6) and [⇡�

I ] 2 H
�
3 (X6) are orientifold-even and orientifold-odd, re-

spectively. For each T2 factor of the 6-torus choose the complex coordinate so that the
identifications take the form

zi ⇠ zi + (1 + ibi) ⇠ zi + i . (2.4)

Compatibility with the orientifold action imposes 2bi 2 Z, and the only two unique choices
are bi = 0 (rectangular/untilted) and bi =

1
2 (tilted): see Fig. 1 for a sketch of these two pos-

sibilities along with the fundamental 1-cycles of the torus, ↵i and �i. We restrict attention
to factorizable 3-cycles, which are determined by three pairs of coprime winding numbers,
{(ni

,m
i)}i=1,2,3, around the fundamental torus cycles ↵i,�i on which the orientifold action

acts as
� : ↵i 7! ↵i � 2bi�i ,

�i 7! ��i .
(2.5)

A symplectic basis of factorizable orientifold-even and orientifold-odd 3-cycles can then be
written as

[⇡+
0 ] = [e↵1e↵2e↵3] , [⇡+

1 ] = �[e↵1�2�3] , [⇡+
2 ] = �[�1e↵2�3] , [⇡+

3 ] = �[�1�2e↵3] ,

[⇡�
0 ] = [�1�2�3] , [⇡�

1 ] = �[�1e↵2e↵3] , [⇡�
2 ] = �[e↵1�2e↵3] , [⇡�

3 ] = �[e↵1e↵2�3] ,
(2.6)

where we have introduced the orientifold-even combinations e↵i = ↵i � bi�i along with a
corresponding shift in the winding numbers to emi = m

i + bin
i. The expansion coefficients

– 3 –

bi = 0 bi =
1
2
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Factorized Cycles
• 3-cycles on which the D6 wrap are specified by three pairs of co-prime winding numbers.


• Expand in a basis of orientifold-even and -odd cycles:


with  and .


• Individuals’ chromosomes will consist of stack size and winding numbers.

̂α i = αi − biβi ̂m i
a =

mi
a + bini

a

1 − bi
∈ ℤ

[π+
0 ] = [ ̂α1][ ̂α2][ ̂α3] ̂X 0

a = n1
an2

an3
a ̂Y0

a = ̂m 1
a ̂m 2

a ̂m 3
a

[π+
1 ] = − [ ̂α1][β2][β3] ̂X 1

a = − n1
a ̂m 2

a ̂m 3
a ̂Y1

a = − ̂m 1
an2

an3
a

⋮ ⋮ ⋮

[Πa] =
3

⨂
i=1

(ni
a[αi] + mi

a[βi]) =
3

∑
I=0

( ̂X I
a[π+

I ] + ̂YI
a[π−

I ])

10.2 Intersecting D6-branes in flat 10d space 303

D62

D61

D62

D61

D61

D62

D62

D61

R2R2R2

X X X

M4

(b)(a)

1 2

3

Figure 10.1 Two pictures of the configuration of two D6-branes intersecting over a 4d subspace of
their volumes.

subspace of their volumes. Consider flat 10d space, decomposed as M4 × R2 × R2 × R2,
and two stacks of D6-branes, spanning M4 times a line in each of the three 2-planes.
Figure 10.1 provides two depictions of the configuration. The local geometry is fully spec-
ified by the three angles θi which define the rotation between the two stacks of D6-branes.
As we discuss below, the chiral fermions are localized at the intersection of the brane vol-
umes. Incidentally, the angles (θ1, θ2, θ3) bear some formal analogy with the orbifold twist
(v1, v2, v3) of Chapter 8.

The appearance of chirality, namely violation of parity, can be understood from the fact
that the geometry of the two D-branes introduces a preferred orientation in the transverse
6d space; the rotation from the first to the second D6-brane defines an orientation by a
6d version of the “right-hand rule.” This also explains why one should choose configu-
rations of D6-branes, as for example two sets of type IIB D5-branes intersecting over 4d
do not lead to 4d chiral fermions, since they do not have enough dimensions to define an
orientation in the extra 6d space.

Let us describe the open string spectrum on a system with one stack of N1 coincident
D6-branes (denoted D61’s) intersecting a second stack of N2 D6-branes (denoted D62’s).
The open strings fall into three classes or sectors:

• 6161: Strings stretching among D61-branes produce 7d U (N1) gauge bosons, three real
adjoint scalars and fermion superpartners, propagating over the 7d worldvolume of the
D61-branes.

• 6262: Similarly, strings stretching among D62-branes give 7d U (N2) gauge bosons, three
real adjoint scalars and fermion superpartners, on the 7d D62-brane worldvolume.

• 6162 + 6261: Open strings between both kinds of D6-branes are naturally localized at
their intersection, to minimize their stretching, and lead to fields charged in the
bi-fundamental representation (N1, N2) of U (N1) × U (N2) (or its conjugate). The
detailed computation of their spectrum is carried out in the next section, but we advance
the punchline. The intersecting configuration leads to a 4d chiral fermion in the
(N1, N2).4 In addition to the chiral fermion, the intersection also leads to several poten-
tially light scalars, whose detailed structure is given later on.

4 Or its conjugate, as encoded in the orientation defined by the intersection; this will be implicitly taken into account in our
discussions. We systematically follow the convention of using 4d left-handed Weyl spinors.

Downloaded from Cambridge Books Online by IP 138.253.100.121 on Fri Apr 12 13:57:11 WEST 2013.
http://dx.doi.org/10.1017/CBO9781139018951.011

Cambridge Books Online © Cambridge University Press, 2013
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Consistency Conditions
• Tadpole cancellation:


• K-theory constraints (absence of global anomalies):


• Supersymmetry (compatibility with O6-planes):


• Lemma [Loges, GS, ’21]: we can take  to be positive co-prime integers WLOG to greatly simplify 
the search for solutions.

̂U I

of equation (2.3) are then

eX0
a = n

1
an

2
an

3
a ,

eX1
a = �n

1
a em2

a em3
a ,

eX2
a = �em1

an
2
a em3

a ,
eX3
a = �em1

a em2
an

3
a ,

eY 0
a = em1

a em2
a em3

a ,
eY 1
a = �em1

an
2
an

3
a ,

eY 2
a = �n

1
a em2

an
3
a ,

eY 3
a = �n

1
an

2
a em3

a .
(2.7)

The coefficients for the orientifold image are found by the replacement emi
! �emi (equiv-

alently, eY I
! �eY I).

O6-planes are located at the fixed-point loci of ⌦�(�1)F , ⌦�(�1)F ✓, ⌦�(�1)F! and
⌦�(�1)F ✓!; all-told the O6-plane homology class is

[⇧O6] = 4[⇡+
0 ] + 4(1� b2)(1� b3)[⇡

+
1 ] + 4(1� b1)(1� b3)[⇡

+
2 ] + 4(1� b1)(1� b2)[⇡

+
3 ] , (2.8)

i.e. eX0
O6

= 4, eX1
O6

= 4(1 � b2)(1 � b3), etc. and eY I
O6

= 0. To unify the treatment of rect-
angular and tilted tori and ensure all quantities are integer-valued, it is useful to introduce
the scaled winding numbers bmi = (1 + 2bi)emi = m

i + 2bi(ni + m
i) 2 Z and coefficients

bX1 = �n
1 bm2 bm3

2 Z, etc. For example, we have simply bXI
O6

= 4. With this normalization
choice, the consistency conditions read []

Tadpole:
X

a

Na
bXI
a = 8 for each I 2 {0, 1, 2, 3} ,

K-theory:
X

a

Na
bY I
a 2 2Z for each I 2 {0, 1, 2, 3} ,

SUSY:

8
>><

>>:

3P
I=0

bXI
a
bUI > 0

3P
I=0

bY I
a
bUI

= 0
for each stack a ,

(2.9)

where bU0 = R
1
xR

2
xR

3
x and bU1 = (1� b2)(1� b3)R1

xR
2
yR

3
y, etc. with R

i
x, R

i
y the tori radii. It

is straightforward to show that we can take bUI to be positive, coprime integers without loss
of generality.1 To ensure control we restrict attention to cases where max(bUI)/min(bUI) is
not too large, working only with bUI < 10.

Emphasize restriction to integer moduli.
Which bUI to scan over? Estimates or crude upper bounds?
To start, consider the simpler case of models containing only type B and type C branes

on untilted tori. The filler branes do not constrain the moduli in any way, and each type
B brane contributes positively to two tadpoles (and zero to the other two). It is enough
to consider the case of three type B branes with three independent constraints; if there are

1Write YU = 0, where [Y]aI = bY I
a and [U ]I = 1/bUI . There exist invertible matrices S 2 Mk⇥k(Z)

and T 2 M4⇥4(Z) which bring Y 2 Mk⇥4(Z) to Smith normal form, G ⌘ SYT 2 Mk⇥4(Z) where only
entries on the main diagonal of G are potentially nonzero. It is clear that there exists a rational basis for
solutions of GV = 0, from which a rational basis for solutions of YU = 0 may be found via U = T V, since
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Brane Classification
Brane classification

Class bXI bY I

A (+,+,+,�) (±,±,±,⌥)

B (+,+, 0, 0) (0, 0,±,⌥)

C (+, 0, 0, 0) (0, 0, 0, 0)
A0

(�,�,�,+) (±,±,±,⌥)

B0
(+,�, 0, 0) (0, 0,±,±)

C 0
(�, 0, 0, 0) (0, 0, 0, 0)

D0
(±, 0, 0, 0) (0,±, 0, 0)

E0
(0, 0, 0, 0) (±, 0, 0, 0)

SUSY

3X

I=0

bXI bUI > 0

3X

I=0

bY I

bUI

= 0

G. J. Loges Brane breeding 13 / 24

{SUSY branes classified

in [Douglas, Taylor, ’06]

“filler branes” coined 


by [Cvetic, Papadimitriou, GS, ’02]:


i) preserves SUSY for all 

complex structure moduli,


ii) satisfies K-theory 

constraint,


 iii) contribute positively 

to only one tadpole.
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Phenomenological Properties
• Each stack of  D6-branes:  gauge group in general but  if  (C-branes)


• Intersection of stack  and  are replicated  times:


• Chiral spectrum:


Na U(Na) USp(Na) ̂YI
a = 0 ∀I

a b Iab = [Πa] ∘ [Πb]

Iab =
3

∏
i=1

(ni
ami

b − mi
ani

b) =
3

∏
i=1

(1 − bi) ×
3

∑
I=0

( ̂X I
a ̂YI

b − ̂YI
a ̂X I

b)

Representation (Na,Nb) (Na,Nb) ⇤⇤a �a

Multiplicity Iab Iab0
1
2(Iaa0 � IaO6)

1
2(Iaa0 + IaO6)

Table 3: Chiral spectrum arising from intersections between brane stacks and their orien-
tifold images.

and O6-planes intersecting multiple times on X
6, with the intersection numbers Iab being

given by

Iab = [⇧a] � [⇧b] =
3Y

i=1

(ni
am

i
b �m

i
an

i
b) =

3Y

i=1

(1� bi)(n
i
a bmi

b � bmi
an

i
b)

=
3Y

i=1

(1� bi)⇥
3X

I=0

� bXI
a
bY I
a � bY I

a
bXI
b

�
.

(2.14)

(MSSM characteristics which appear in fitness function: gauge group, number families)

2.3 Symmetries and winding number operations

The encoding of a homology class as a tuple of six winding numbers is not unique: the sign
of winding numbers is not uniquely fixed. For example, referring to the winding numbers
n
i
,m

i of a stack collectively as w
i, the winding numbers

w
i = (3, 1, 0,�1,�1, 2) () (�3,�1, 0,�1, 1,�2) (2.15)

describe the same homology class for bi = 0. In general the bXI and bY I are unaltered if the
signs of two (n,m) pairs are changed simultaneously; the map from winding numbers to
homology class is 4-to-1. We can leverage this redundancy to choose a “standard form” for
each stack’s winding number signs. We opt for the simple rule of choosing the representation
which is largest according to the dictionary order relation on Z6. For example, from

(�3,�1, 0,�1, 1,�2) < (�3,�1, 0, 1,�1, 2) < (3, 1, 0,�1,�1, 2) < (3, 1, 0, 1, 1,�2)

the standard form would be w
i = (3, 1, 0, 1, 1,�2).

There are also simple operations which flip the signs of the winding numbers on rect-
angular tori which extend naturally to the case of tilted tori:

flipn : (ni
,m

i) 7! (�n
i
,m

i + 2bin
i) i.e. (ni

, bmi) 7! (�n
i
, bmi) ,

flipbm : (ni
,m

i) 7! (ni
,�m

i
� 2bin

i) i.e. (ni
, bmi) 7! (ni

,�bmi) ,

flipnbm : (ni
,m

i) 7! (�n
i
,�m

i) i.e. (ni
, bmi) 7! (�n

i
,�bmi) .

(2.16)

Notice that even for tilted tori these do not alter the coprimality conditions, since gcd(n,m+

n) = gcd(n,m). Each such flip results in an even number each of bXI and bY I changing signs.
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308 Type IIA orientifolds: intersecting brane worlds

(1,2)

(1,–1)

(3,1)

(1,1)

X X

T2T2 T2

(1,0)

(1,–1)

Figure 10.4 Examples of intersecting 3-cycles and their wrapping numbers in T6.

Near each intersection between D6-brane stacks, the configuration clearly reduces to the
intersecting D6-branes in flat 10d space studied in Section 10.2. One important novelty in
compact models is that the angles between branes are derived quantities, and depend on
the closed string geometric moduli; for instance, for a rectangular T2 of radii R1, R2 along
the horizontal and vertical directions, the angle between the 1-cycles (1, 0) and (n, m) is

tan θ = m R2

n R1
= m

n
Re U, (10.11)

where U is the T2 complex structure modulus, e.g. as defined in (9.81) (modulo the
replacement R2 ↔ R1).

As mentioned above, two 3-cycles in general intersect at multiple points. In the toroidal
case, the intersection number is given by the product of the number of intersections in each
2-torus, and reads

Iab =
(

n1
am1

b − m1
an1

b

)
×

(
n2

am2
b − m2

an2
b

)
×

(
n3

am3
b − m3

an3
b

)
. (10.12)

For example, the two branes in Figure 10.4 have intersection number 12 = (1) × (−3) ×
(−4). It is useful to exploit the topological tools in Section B.1 and introduce the
3-homology class ["a] of the 3-cycle "a . Introducing the T2 basic homology 1-cycles [a],
[b], the 1-cycle (n, m) has an associated 1-homology class n[a] + m[b]. Then a 3-cycle
with wrapping numbers

(
ni

a, mi
a
)

has 3-homology class

["a] = ⊗3
i=1

(
ni

a [ai ] + mi
a [bi ]

)
. (10.13)

The multiplicity (10.12) is the homological intersection number, Iab = ["a]·["b], a simple
generalization of (B.19). The result follows easily from [ai ] · [b j ] = δi j and linearity and
antisymmetry of the intersection pairing. It is worthwhile to mention that the homological
intersection number weights intersections with a sign, depending on their orientation; as
expected on physical grounds, it is an index measuring the net number of chiral fermions
in a given bi-fundamental representation.

These basic data, i.e. the multiplicities Na , and the 3-cycle intersection numbers Iab, are
sufficient to compute the gauge symmetry and chiral matter content of the 4d compactifi-
cation, as follows. The closed string sector is just a toroidal compactification and produces

Downloaded from Cambridge Books Online by IP 138.253.100.121 on Fri Apr 12 13:57:11 WEST 2013.
http://dx.doi.org/10.1017/CBO9781139018951.011

Cambridge Books Online © Cambridge University Press, 2013



GARY SHIU, THE STRING GENOME PROJECT

Environment
Brane breeding: environment

�(⇣) =

2

666664

N1 n1
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m1
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m2
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m3
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Nk n1

k m1
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k m2

k n3

k m3

k

3

777775

k⇥7

Fix bi 2 {0, 1

2
}, bUI > 0, Nmax, kmin, kmax

I Winding numbers pairwise coprime

I Possible restrictions of search space: natural replacements of,

e.g., B0
! B and C 0

! C

I Include type C branes automatically

G. J. Loges Brane breeding 14 / 24

• Fix . 


• Winding numbers pairwise co-prime.


• Env: Possible restrictions of search space, e.g., replacement of  branes 
or removing  branes from the chromosomes and adding them later for maximizing fitness.

bi ∈ {0,
1
2

}, ̂U I > 0, Nmax, kmin, kmax

A → A′￼ , B → B′￼ , C → C′￼

C, C′￼
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Crossover
• We employ 8 uniform cross-over methods:


• # crossover points (1/2)


• crossovers between stacks/genes (s/g)


• # stacks constrained to match with 
that of one of the parents (c/u)


[Loges, GS, ’21]


• Other cross-over methods can be employed. 
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Mutations
• Change stack size:  


• Change winding number:  


• Randomize winding number signs: 


• e.g.  flips the signs of .


• Permute :


• e.g.  swaps  and .

μN(N) = N ± 1

μw(w) = w ± {1,2}

μ±({w}) = (n1, − m1, n2, m2, − n3, − m3) ̂X 0, ̂X 1, ̂Y2, ̂Y3

̂X I, ̂YI

μ𝔖4
({w}) = (n2, m2, n1, m1, n3, m3) ̂X 1 ↔ ̂X 2 ̂Y1 ↔ ̂Y2
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Fitness
• The fitness function measures how close an individual is to having desirable properties.


• We take the fitness function to take the form (  is optimal):


where

ℱ = 0

population diverse and to make gradual improvements to the fitness. The following list of
mutations are used:

• N: Change a stack size, µN (N) = N ± 1.

• w: Change a winding number, µw(w) = w ± {1, 2}.

• ±: Change a stack’s winding numbers’ signs. See App. A.2 for details.

• S4: Permute a stack’s bXI
, bY I . See App. A.2 for details.

Because the number of stacks k is variable, to each mutation µi is associated a rate ri which
parametrizes the expected number of times this mutation is applied. That is, µw is applied
to each winding number with probability rw/6k, while µN , µ± and µS4 are applied to each
stack with probabilities rN/k, r±/k and rS4/k, respectively.

3.4 Adjustments

Cross-over and application of mutations may result in a chromosome which is not “valid”.
As a final step before being added to the population, the following checks are made in turn:

• Non-empty stacks: each stack should have Na � 1.

• Coprimality: each pair of winding numbers (n,m) should satisfy gcd(n,m) = 1.

• Standardization: bring each stack’s winding numbers to the “standard form” discussed
in Sec. 2.3.

• Allowed types: for env = 2 and env = 3 stacks of type A
0, B

0, C
0 and C are

potentially changed or removed.

• No duplicates: stacks with identical winding numbers are combined.

See App. A.3 for more details on how such changes are implemented.

3.5 Fitness function

The fitness function measures how close an individual is to having desirable properties.
This includes tadpole cancellation (T), vanishing of K-theory charge (K) and preservation
of supersymmetry (S), as well as MSSM-like properties (M). We take the fitness function
to have the form

F(⇣) = WTFT(⇣) +WKFK(⇣) +WSFS(⇣) +WMFM(⇣) , (3.2)

where each Fi lies in the interval [0, 1] with Fi = 0 being optimal. We can choose the
non-negative weights Wi to add to one without loss of generality. The individual terms are
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FM(⇣) = G(⇣)/4 , (3.6)

where the brackets h · i indicate an average over either I or a, as appropriate, and h(z) = z
1+z

tames the fitness for large tadpole or large Sa; the “scales” �T and �S control the points at
which the nonlinearity sets in. Note that it is important to average over Sa rather than take
a sum because the number of stacks each individual has is variable; a sum would artificially
favor individuals with fewer stacks. The function G measures how far the gauge group is
from containing a U(3)⇥U(2)⇥U(1)⇥U(1) factor:

G(⇣) = max
�
1�#U(3), 0

 
+max

�
1�#U(2), 0

 
+max

�
2�#U(1), 0

 
. (3.7)

We will refer to individuals or solutions collectively in terms of which of the three
consistency conditions they satisfy. For example, KS-solutions satisfy the K-theory and
SUSY conditions but have one or more uncancelled tadpoles, while TKS-solutions are fully
consistent.

3.6 Summary

For each instance of the genetic algorithm described above there are several parameters
which need to be chosen. These fall into three categories, which we will refer to as “envi-
ronment parameters”, “meta-parameters”, and “hyper-parameters”:

• Environment parameters: bi, bUI , kmin, kmax, Nmax, env

• Meta-parameters: npop, nelite, gmax

• Hyper-parameters: pi, ri, Wi, �T,S

Environment parameters are chosen by hand and to search the landscape one should conduct
runs for various choices of bi and bUI . The meta-parameters and hyper-parameters should
be chosen to maximize the genetic algorithm’s efficiency in finding the desired solutions. In
App. B we discuss the process by which these parameters are fixed to be

(p1sc, p1su, p1gc, p1gu, p2sc, p2su, p2gc, p2gu) = (· · · )

(rw, rN , r±, rS4) = (· · · )

(WT,WK,WS) = (1�WM)⇥ (· · · )

(�T,�S) = (· · · )

(3.8)
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Brane Breeding: Summary
• Adjustments:


• Non-empty stacks: each stack should have 


• Coprimality: 


• Standardization: bring  to standard form


• No-duplicates: stacks with identical  are combined


• Hyperparameter optimization:


• Environment parameters: 


• Metaparameters: 


• Hyperparameters: 

Na ≥ 1

gcd(ni
a, mi

a) = 1

⊗3
i=1 (ni

a, mi
a)

⊗3
i=1 (ni

a, mi
a)

bi, ̂U I, kmin, kmax, Nmax, env

npop, nelite, gmax

pi, ri, 𝒲i, ΔT,S

Brane breeding: summary

I Pick environment: bi 2 {0, 1

2
}, bUI > 0

I Pick GA hyperparameters:

npop = 250, nelite = 25, Nmax = 10,

(kmin, kmax) = (2, 10)

I Pick cross-over and mutation probabilities

I Pick fitness parameters: Wi, �T,S

initial (random)

population

selection

cross-over

mutation

adjust

G. J. Loges Brane breeding 18 / 24
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How GA LearnsResults: single run

bi = 0, bUI = 1, (npop, nelite, gmax) = (250, 25, 100), WMSSM = 0

G. J. Loges Brane breeding 19 / 24
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Landscape Statistics: U(N) Factors

bi = (0,0,
1
2

)

P[SU(2)] ≈ 0.5, P[SU(3)] ≈ 0.1, P[SU(2) and SU(3)] ≈ 0.04 ≈ P[SU(2)] × P[SU(3)]

•  unique, fully consistent models can be generated in .𝒪(106) 𝒪(hours)
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Landscape Statistics: Chirality vs Rank

bi = (0,0,
1
2

)

Other correlations i) between 
environment with phenotypes 

(e.g. # generations, rank, etc),


and ii) among phenotypes,

plus iii) other landscape statistics


can be found in [Loges, GS, ’21].



GARY SHIU, THE STRING GENOME PROJECT

Summary
• We demonstrated how GAs and RL can effectively find desirable string vacua: flux vacua [Cole, 

Schachner, GS, ’19];[Cole, Schachner, GS, ’21] and intersecting brane models [Loges, GS, ’21] .


• These methods discover structure (e.g., symmetries, correlations) in the landscape (resonate 
with [Cole, GS, ’18]) but in a complementary way: combining them can reduce sampling bias.


• Our studies highlighted the similarities/differences of the optimization/learning strategies 
used (e.g., both exploit the strategy of SUSY  filler branes but different vacua are sampled).


• Preliminary landscape statistics (stay tuned for our upcoming paper [Loges, GS, ’21]).
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