

The String Genome Project

The Cast

Andreas Schachner (Cambridge)

Sven Krippendorf (Munich)

Gregory Loges (UW-Madison)

- A. Cole, A. Schachner and GS, "Searching the Landscape of Flux Vacua with Genetic Algorithms," JHEP 11, 045 (2019) [arXiv:1907.10072 [hep-th]].
- A. Cole, S. Krippendorf, A. Schachner and GS, "Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning," [arXiv:2111.11466 [hep-th]], accepted for NeurIPS 2021 Machine Learning and the Physical Sciences.
- G.J. Loges and GS, "Breeding Realistic D-brane Models," [arXiv:2112.08391 [hep-th]].

Nature or Nurture?

- Do we achieve excellence by breeding or training?
- Our work does **NOT** lend support to eugenics.
- Genetics and training are complementary; both lead to Rome, with different traits uncovered.

Nature or Nurture?

- The landscape is vast, with as many as 10^{500} [Ashok, Douglas]; [Denef, Douglas] to $10^{272,000}$ [Taylor, Wang] states, making exhaustive searches or random sampling impractical.
 - Can stochastic optimization (e.g. GAs) and RL effectively search for desirable string vacua?
 - Can these methods discover structures in the landscape? Are the structures discovered the same?

Nature or Nurture?

- Can stochastic optimization (e.g. GAs) and RL effectively search for desirable string vacua?
 - Flux vacua with desired W_0 and g_s : [Cole, Schachner, GS, '19]; [Cole, Krippendorf, Schachner, GS, '21]
 - Intersecting brane models [Loges, GS, '21]
- The above works uncover structures in the landscape. The structures found by GA and RL are complementary.

Genetic Algorithms

- Start from a (random) initial population:
 - Selection for breeding favors fitter individuals
 - Breeding via crossover (large changes).
 - Mutations keep the population sufficiently diverse (small changes).
 - Elitism ensures monotonic progress (optional).
- Rinse and Repeat.
- Many string landscape problems can be phrased as inverse problems with discrete variables
 (fluxes, # branes), traditional gradient-descent-like optimizations are not directly applicable.

An Example: Knapsack Problem

- The problem of finding vacua with energies within a specific range in the (toy) landscape (e.g. [Bousso, Polchinski];[Arkani-Hamed, Dimopoulos, Kachru]) is in the same universality class.
- Given a collection of items with weights and values, choose the subset which maximizes total
 value without exceeding the capacity of your knapsack.

• An individual ζ consists of a chromosome χ describing a choice of items and a fitness which characterizes $\mathcal F$ how well the problem is solved:

$$\chi(\zeta) = 11010$$
 $(w, v) = (22, 55)$ $\mathcal{F}(\zeta) = 0$
 $\chi(\zeta) = 10100$ $(w, v) = (13, 33)$ $\mathcal{F}(\zeta) = 33$
 $\chi(\zeta) = 00110$ $(w, v) = (18, 51)$ $\mathcal{F}(\zeta) = 51$

An Example: Knapsack Problem

- Selection: binary tournament to select two "parents"
- Crossover: combine chromosomes of two parents to create child

	100101110001
\otimes	011111011101
	100101011101

• Mutation: flip each bit with probability p

 $110101111101 \longrightarrow 110101101101$

• Efficiency can be seen from a slightly scaled-up version: If we have 16 objects with certain weight and values, we can reach an optimal solution after $\mathcal{O}(10)$ generations for a population of size 50 and $\mathcal{O}(400)$ unique states visited, compared with brute-force search over $2^{16} = 65,536$ states.

The String Landscape

Inverse Problem: how to a) identify and b) characterize flux vectors with particular properties

Flux vector $\overrightarrow{N} \in \mathbb{Z}^m$ (subject to tadpole)

"Physical Observables", e.g. $|W_0|$

solve equations of motion = minimizing potential

calculate phenomenology

Challenge for string theory:

As many as $10^{272,000}$ vacua [Taylor, Wang '15], but only a few are phenomenologically interesting!

The optimization algorithms

We search for desirable string vacua via two optimization methods:

VS.

We provide in [Cole, Krippendorf, Schachner, GS, '21] the first comparison between GAs and RL in a string theory context!

See also the recent work: [Abel et al.: 2110.14029]

To improve efficiency, we use the reward structure of [Krippendorf et al.] for RL and optimize hyperparameters in the GA by computing correlations with the mean average distance to the optimal solution.

Task

Apply GA+RL to find string vacua with $|W_0| = 50,000 \pm 1000$

We performed a Principal Component Analysis (PCA) on the output of flux vectors in \mathbb{Z}^8

PCA on combined output

Task

Apply GA+RL to find string vacua with $|W_0| = 50,000 \pm 1000$

We performed a Principal Component Analysis (PCA) on the output of flux vectors in \mathbb{Z}^8

PCA on combined output

Task

Apply GA+RL to find string vacua with $|W_0| = 50,000 \pm 1000$

We performed a Principal Component Analysis (PCA) on the output of flux vectors in \mathbb{Z}^8

PCA on combined output

PCA on individual output

Task

Apply GA+RL to find string vacua with $|W_0| = 50,000 \pm 1000$

We performed a Principal Component Analysis (PCA) on the output of flux vectors in \mathbb{Z}^8

PCA on combined output

PCA on individual output

Correlations on the Landscape

- Some correlations are obvious as pairs of fluxes contribute as products to the tadpoles.
- There are correlations unrelated to the tadpoles.
- Comparing individual correlation maps with the combined one can unpack how GA & RL find solutions.

Take Away Messages

- (1) We demonstrated that GAs and RL are efficient in finding desirable string vacua.
- (2) Combining the output of GAs and RL allows to identify universal structures in the string landscape due to reduced sampling bias.
- (3) We provided evidence for previously unknown symmetries and correlations among special string vacua.

Future directions

- Apply to tasks where reward structure becomes sparse such as $\mid W_0 \mid \ll 1$.
- Determine structure behind and constraints on string theory solutions more systematically.
- Investigate more complex backgrounds and different phenomenological requirements.

Breeding Realistic D-brane Models

• Inverse problem of finding what discrete choices (#branes, how they wrap the internal space) would give phenomenologically desirable vacua (spectrum, couplings etc) [Loges, GS, '21].

Intersecting Brane Models

- Type IIA orientifolds with intersecting D6-branes (see [Blumenhagen, Cvetic, GS, Langacker, '05];[Blumenhagen, Kors, Lust, Stieberger, '07]; [Ibanez & Uranga's book, '12] for reviews) have desirable built-in features:
 - Non-Abelian gauge groups on branes
 - (Replicated) Chiral matter at brane intersections
- Timeline for the "harmonic oscillator" of intersecting brane models i.e. Type IIA on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$:
 - $\mathcal{N}=1$, 4D compact models [Cvetic, GS, Uranga, '01]x2
 - "One in a billion" estimate [Gmeiner, Blumenhagen, Honecker, Lust, Weigand, '06]
 - Proof of finiteness [Douglas, Taylor, '06]
 - Reinforcement learning [Halverson, Nelson, Ruehle, '19]
 - Genetic Algorithm [Loges, GS, '21]

Type IIA Orientifolds

- Type IIA orientifolds of Calabi-Yau X: Weak coupling duals of G_2 compactifications of M-theory. [See Lukas's talk for investigation on heterotic models]
- Consider $X=T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ where $\theta: (z_1,z_2,z_3) \mapsto (z_1,-z_2,-z_3)$, $\omega: (z_1,z_2,z_3) \mapsto (-z_1,z_2,-z_3)$.
- Orientifold action $\Omega \overline{\sigma} (-1)^F$ with $\overline{\sigma}: z_i \mapsto \overline{z}_i$
- Two torus shapes are compatible with $\overline{\sigma}$:

Factorized Cycles

- 3-cycles on which the D6 wrap are specified by three pairs of co-prime winding numbers.
- Expand in a basis of orientifold-even and -odd cycles:

$$[\Pi_a] = \bigotimes_{i=1}^3 \left(n_a^i [\alpha_i] + m_a^i [\beta_i] \right) = \sum_{I=0}^3 \left(\widehat{X}_a^I [\pi_I^+] + \widehat{Y}_a^I [\pi_I^-] \right)$$

$$[\pi_0^+] = [\hat{\alpha}_1][\hat{\alpha}_2][\hat{\alpha}_3] \qquad \widehat{X}_a^0 = n_a^1 n_a^2 n_a^3 \qquad \widehat{Y}_a^0 = \widehat{m}_a^1 \widehat{m}_a^2 \widehat{m}_a^3$$

$$[\pi_1^+] = -[\hat{\alpha}_1][\beta_2][\beta_3] \qquad \widehat{X}_a^1 = -n_a^1 \widehat{m}_a^2 \widehat{m}_a^3 \qquad \widehat{Y}_a^1 = -\widehat{m}_a^1 n_a^2 n_a^3$$

$$\vdots \qquad \vdots \qquad \vdots$$

with
$$\widehat{\alpha}_i = \alpha_i - b_i \beta_i$$
 and $\widehat{m}_a^i = \frac{m_a^i + b_i n_a^i}{1 - b_i} \in \mathbb{Z}$.

Individuals' chromosomes will consist of stack size and winding numbers.

Consistency Conditions

• Tadpole cancellation:

$$\sum_{a} N_a \widehat{X}_a^I = 8$$

• K-theory constraints (absence of global anomalies):

$$\sum_{a} N_a \widehat{Y}_a^I \in 2\mathbb{Z}$$

• Supersymmetry (compatibility with O6-planes):

$$\sum_{I=0}^{3} \widehat{X}_{a}^{I} \widehat{U}_{I} > 0 \qquad \qquad \sum_{I=0}^{3} \frac{\widehat{Y}_{a}^{I}}{\widehat{U}_{I}} = 0 \qquad \qquad \widehat{U}_{0} = R_{x}^{1} R_{x}^{2} R_{x}^{3} \quad \text{etc.}$$

• Lemma [Loges, GS, '21]: we can take \widehat{U}_I to be positive co-prime integers WLOG to greatly simplify the search for solutions.

Brane Classification

SUSY branes classified

in [Douglas, Taylor, '06]

Class	\widehat{X}^{I}	\widehat{Y}^I	
\overline{A}	(+, +, +, -)	(\pm,\pm,\pm,\mp)	
lacksquare	(+, +, 0, 0)	$(0,0,\pm,\mp)$	
C	(+,0,0,0)	(0,0,0,0)	
$\overline{A'}$	(-, -, -, +)	$\overline{(\pm,\pm,\pm,\mp)}$	
B'	(+, -, 0, 0)	$(0,0,\pm,\pm)$	
C'	(-,0,0,0)	(0, 0, 0, 0)	
D'	$(\pm, 0, 0, 0)$	$(0, \pm, 0, 0)$	
E^{\prime}	(0, 0, 0, 0)	$(\pm, 0, 0, 0)$	

"filler branes" coined

by [Cvetic, Papadimitriou, GS, '02]:

- i) preserves SUSY for all complex structure moduli,
 - ii) satisfies K-theory constraint,
 - iii) contribute positively to only one tadpole.

Phenomenological Properties

- Each stack of N_a D6-branes: $U(N_a)$ gauge group in general but $USp(N_a)$ if $\widehat{Y}_a^I=0 \ \forall I$ (C-branes)
- Intersection of stack a and b are replicated $I_{ab} = [\Pi_a] \circ [\Pi_b]$ times:

$$I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i) = \prod_{i=1}^{3} (1 - b_i) \times \sum_{I=0}^{3} (\widehat{X}_a^I \widehat{Y}_b^I - \widehat{Y}_a^I \widehat{X}_b^I)$$

Chiral spectrum:

Representation	$(\mathbf{N}_a,\overline{\mathbf{N}}_b)$	$(\mathbf{N}_a,\mathbf{N}_b)$	\Box a	\Box_a
Multiplicity	I_{ab}	$I_{ab'}$	$\frac{1}{2}(I_{aa'} - I_{aO6})$	$\frac{1}{2}(I_{aa'} + I_{aO6})$

Environment

$$\chi(\zeta) = \begin{bmatrix} N_1 & n_1^1 & m_1^1 & n_1^2 & m_1^2 & n_1^3 & m_1^3 \\ N_2 & n_2^1 & m_2^1 & n_2^2 & m_2^2 & n_2^3 & m_2^3 \\ N_3 & n_3^1 & m_3^1 & n_3^2 & m_3^2 & n_3^3 & m_3^3 \\ & & \vdots & & & & \\ N_k & n_k^1 & m_k^1 & n_k^2 & m_k^2 & n_k^3 & m_k^3 \end{bmatrix}_{k \times 7}$$

- Fix $b_i \in \{0, \frac{1}{2}\}$, $\widehat{U}_I > 0$, N_{\max} , k_{\min} , k_{\max} .
- · Winding numbers pairwise co-prime.
- Env: Possible restrictions of search space, e.g., replacement of A o A' , B o B' , C o C' branes or removing C,C' branes from the chromosomes and adding them later for maximizing fitness.

Crossover

1su:

- We employ 8 uniform cross-over methods:
 - # crossover points (1/2)
 - crossovers between stacks/genes (s/g)
 - # stacks constrained to match with that of one of the parents (c/u)

[Loges, GS, '21]

• Other cross-over methods can be employed.

1gc:

2sc:

2gu:

 \otimes

Mutations

- Change stack size: $\mu_N(N) = N \pm 1$
- Change winding number: $\mu_w(w) = w \pm \{1,2\}$
- Randomize winding number signs:
 - e.g. $\mu_{\pm}(\{w\}) = (n^1, -m^1, n^2, m^2, -n^3, -m^3)$ flips the signs of \widehat{X}^0 , \widehat{X}^1 , \widehat{Y}^2 , \widehat{Y}^3 .
- Permute \widehat{X}^I , \widehat{Y}^I :
 - e.g. $\mu_{\mathfrak{S}_4}(\{w\}) = (n^2, m^2, n^1, m^1, n^3, m^3)$ swaps $\widehat{X}^1 \leftrightarrow \widehat{X}^2$ and $\widehat{Y}^1 \leftrightarrow \widehat{Y}^2$.

Fitness

- The fitness function measures how close an individual is to having desirable properties.
- We take the fitness function to take the form ($\mathcal{F} = 0$ is optimal):

$$\mathcal{F}(\zeta) = \mathcal{W}_{\mathrm{T}} \mathcal{F}_{\mathrm{T}}(\zeta) + \mathcal{W}_{\mathrm{K}} \mathcal{F}_{\mathrm{K}}(\zeta) + \mathcal{W}_{\mathrm{S}} \mathcal{F}_{\mathrm{S}}(\zeta) + \mathcal{W}_{\mathrm{M}} \mathcal{F}_{\mathrm{M}}(\zeta)$$

$$\begin{array}{ll} \text{where} & \mathcal{F}_{\mathrm{T}}(\zeta) = h\Big(\frac{\langle T^I \rangle}{\Delta_{\mathrm{T}}}\Big)\,, & T^I = \left|\sum_a N_a \widehat{X}_a^I - 8\right|\,, & h(z) = \frac{z}{1+z} \\ \\ \mathcal{F}_{\mathrm{K}}(\zeta) = \langle K^I \rangle\,, & K^I = \Big(\sum_a N_a \widehat{Y}_a^I\Big) \mod 2\,, \\ \\ \mathcal{F}_{\mathrm{S}}(\zeta) = h\Big(\frac{\langle S_a \rangle}{\Delta_{\mathrm{S}}}\Big)\,, & S_a = \left|\min\left\{\frac{\sum_I \widehat{X}_a^I \widehat{U}_I}{\sum_I \widehat{U}_I}, 0\right\}\right| + \left|\frac{\sum_I \widehat{Y}_a^I/\widehat{U}_I}{\sum_I 1/\widehat{U}_I}\right|\,, \\ \\ \mathcal{F}_{\mathrm{M}}(\zeta) = G(\zeta)/4\,, & G = \text{"distance to the SM"} \end{array}$$

Brane Breeding: Summary

Adjustments:

- Non-empty stacks: each stack should have $N_a \ge 1$
- Coprimality: $gcd(n_a^i, m_a^i) = 1$
- Standardization: bring $\bigotimes_{i=1}^{3} \left(n_a^i, m_a^i \right)$ to standard form
- No-duplicates: stacks with identical $\bigotimes_{i=1}^3 (n_a^i, m_a^i)$ are combined

• Hyperparameter optimization:

- Environment parameters: b_i , \widehat{U}_I , k_{\min} , k_{\max} , N_{\max} , env
- Metaparameters: $n_{\text{pop}}, n_{\text{elite}}, g_{\text{max}}$
- Hyperparameters: $p_i, r_i, \mathcal{W}_i, \Delta_{\text{T.S}}$

How GA Learns

$$b_i = 0$$
, $\widehat{U}_I = 1$, $(n_{\text{pop}}, n_{\text{elite}}, g_{\text{max}}) = (250, 25, 100)$, $\mathcal{W}_{\text{MSSM}} = 0$

generation

Landscape Statistics: U(N) Factors

• $\mathcal{O}(10^6)$ unique, fully consistent models can be generated in $\mathcal{O}(\text{hours})$.

 $P[SU(2)] \approx 0.5$

 $P[SU(3)] \approx 0.1$, $P[SU(2) \text{ and } SU(3)] \approx 0.04 \approx P[SU(2)] \times P[SU(3)]$

Landscape Statistics: Chirality vs Rank

Other correlations i) between environment with phenotypes (e.g. # generations, rank, etc), and ii) among phenotypes, plus iii) other landscape statistics can be found in [Loges, GS, '21].

Summary

- We demonstrated how GAs and RL can effectively find desirable string vacua: **flux vacua** [Cole, Schachner, GS, '19];[Cole, Schachner, GS, '21] and **intersecting brane models** [Loges, GS, '21].
- These methods discover structure (e.g., symmetries, correlations) in the landscape (resonate with [Cole, GS, '18]) but in a complementary way: combining them can reduce sampling bias.
- Our studies highlighted the similarities/differences of the optimization/learning strategies used (e.g., both exploit the strategy of SUSY \rightarrow filler branes but different vacua are sampled).
- Preliminary landscape statistics (stay tuned for our upcoming paper [Loges, GS, '21]).

Summary

- We demonstrated how GAs and RL can effectively find desirable string vacua: **flux vacua** [Cole, Schachner, GS, '19];[Cole, Schachner, GS, '21] and **intersecting brane models** [Loges, GS, '21].
- These methods discover structure (e.g., symmetries, correlations) in the landscape (resonate with [Cole, GS, '18]) but in a complementary way: combining them can reduce sampling bias.
- Our studies highlighted the similarities/differences of the optimization/learning strategies used (e.g., both exploit the strategy of SUSY \rightarrow filler branes but different vacua are sampled).
- Preliminary landscape statistics (stay tuned for our upcoming paper [Loges, GS, '21]).

