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Physicists would like to disentangle new physics (new particles, dark 
matter, … ) from data, gathered from the detectors or from the sky.  
For that we need very high-precision predictions from known physics, 
such as the SM. We cannot reliably do that right now.  

Motivation

Nature, 2021

e.g. muon magnetic moment



Physicists would like to disentangle new physics (new particle, dark 
matter, … ) from data, gathered from the detectors or from the sky.  
For that we need very high-precision predictions from known physics, 
such as the SM. We cannot do that right now.  

Motivation

Question: Can ML help? 



• Lattice field theory has been the main computation tool for 
computing in non-perturbative QFT, such as QCD, computations.   

Motivation

sampling, 
usually done by Markov Chain Monte Carlo (MCMC) 

e.g.  a single scalar field



• Challenge: critical slowing down,  or the catastrophic inefficiency 
which makes it taking prohibitively long to sample enough 
independent configurations in the limits of 

- continuous limit: physical size fixed, lattice spacing 

- phase transition limit:  

Motivation

sampling, 
usually done by Markov Chain Monte Carlo (MCMC) 



Flow-Based Approach

“Latent space” Configuration 
space

௙

Pushed forward probability: 

ವ ವ
*

* We choose Latent space Configuration Space, and a bijection.  

[D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. ICML 2015.]



Flow-Based Approach
[D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. ICML 2015.]

[Silde credits: Jonas Köhler]



“Latent space” Configuration 
space

௙

Pushed forward probability: 

Key to computational feasibility and efficiency

1. is easy to sample (e.g. ind Gaussian) 3. 𝒇 approximates well the target 
physical distribution

𝒆ష𝑺[𝝓]

𝒁

2. ௙ can be easily computed/approximated



How to make sure 𝒇 approximate well the target physical 
distribution ?

- Choose an Ansatz for the flow (with a computable Jacobian).  Parametrise
the flow with parameters ఏ. 

- Find the parameters that minimize the “reverse Kullback-Leibler (KL)” 
cost function: 

Reverse KL Training

Note: no prepared samples needed for training. 

ି𝑺[𝝓]



Finding 
Given the parametrisation ఏ

Draw samples 
Compute KL loss = KL . 

Building Markov chains using 
samples from ఏ∗

Gradient descent towards 
minimal KL Update . 

Training
Insufficient accuracy. 
Keep training. 

Sufficient accuracy. 
Save the model ∗. 

Note: Independent samples (next sample ind. of the previous one).



“Latent space” Configuration 
space

Sampling from the model: 
Latent space sampling+ Metropolis-Hasting

Samples here Sample configurations

To account for the discrepancy between 
the true distribution and the approximation ௙ , 
accept the candidate configuration as ௧ାଵ with probability 

௧

௙ ௙ ௧

Theoretically, asymptotic convergence to is guaranteed. 



Checking the quality of the flow: 

Acceptance rate = average of ೟

೑ ೑ ೟

- Acceptance rate = 1 when ௙

- Long chains of rejections lead to inefficient sampling



Previous work
on using flows to sample in lattice field theories: 
- Flow-based generative models for Markov chain Monte Carlo in lattice field 

theory. 1904.12072 (PRD)

Generalisations: 
- Equivariant flow-based sampling for lattice gauge theory. 2003.06413 (PRL)
- Sampling using SU(N) gauge equivariant flows. 2008.05456 (PRD)
- Flow-based sampling for fermionic lattice field theories. 2106.05934
- Flow-based sampling for multimodal distributions in lattice field 

theory. 2107.00734 

by the MIT-DeepMind-NYU group, using a discrete “RealNVP”  flow respecting 
part of the lattice symmetries. 

𝟒-theory in 2D



Previous work
RealNVP discrete normalizing flows  

• Prior method [Albergo et al, 2018] uses realNVP [Dinh et al, 2016]

• Diffeomorphism is composed of coupling layers
• Split input in ଵ and ଶ of dimensions ଵ and ଶ

• ଵ ଵ

• ଶ ଶ ଵ ଵ

• where ௗభ ௗమ parameterized neural networks
• For example, composed of learnable linear transformations and ReLU 

• Inverse:
• ଵ ଵ

• ଶ ଶ ଵ ଵ

• Easy to compute change of volume: డ௙ ௫

డ௫ ଵ ௜௜

• On lattice, split is done as checkerboard, not equivariant



Previous work
on using flows to sample in lattice field theories: 

Challenges before one can scale it up: critical slowing down of training
The “costs” of training the network till an acceptable acceptance rate is 
achieved scales very steeply with the lattice size  ఈ ௅ .  
Question: Does it really work for large lattices? 



How to find a better ? Our approach: 
I. Symmetries  

Spacetime symmetries: e.g. for 2D periodic square lattices
Global symmetry: e.g. for the theory

Bake them in instead of hoping that the network will learn them.



How to find a better ? Our approach:
II. Continuous Flow (Neural ODE)

Construct the flow using an ODE: 

“Latent space” Configuration 
space

learn this vector 



3. ௙ can be easily computed/approximated

“Latent space” Configuration 
space

How to find a better ? Our approach:
II. Continuous Flow (Neural ODE)



Advantages of the continuous flow: 
- Flexible choices of the vector field 
- Modest memory cost 
- Interpretability

[Chen, Rubanova, 
Betternourt, Duvenaud] 
NeurIPS 2018

“Latent space” Configuration 
space

Free theory Interacting theory ௘షೄ[ഝ]

௓

A learned RG flow? 

How to find a better ? Our approach:
II. Continuous Flow (Neural ODE)



Focus on 2D theory.  
Our choice: a single layer shallow network

learnable parameters 

: time shift kernels 



Focus on 2D theory.  
Fully equivariant w.r.t. all symmetries. 

Spacetime symmetries (translation, rotation, reflection): 



Focus on 2D theory.  
Fully equivariant w.r.t. all symmetries. 

Global symmetry:  

The ODE preserves the symmetry (no term).

So  . 

More generally, to preserve a global symmetry , we require 

for all (equivariance)

e.g. 



Spacetime symmetries: better baked in

Symmetries are good. 



Experimental Result: drastic improvement of scalability



Lessons Learned: 

- Symmetries really help.   
Verified by ablation study: 

- Deeper is not always better.  
We used a single layer continuous flow. 



Future: 

- Pushing on the physics front. 
Goal application: LQCD.  Clearly, to make a difference, 
scalability is a crucial must. 

- Pushing on the AI front. 
* The complexity and the prior knowledge makes lattice field 
theories ideal testing grounds for new sampling technics. 
* Interpretability. 


