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Motivation & Results

• Use ML to learn topological data of Calabi-Yau 
threefolds from the Kreuzer-Skarke database of 
473,800,776 reflexive polytopes 

• NN is able to learn/realize an exact expression for the 
Euler number in terms of minimum amount of input 
data from the polytope and its dual. 

• For the individual Hodge numbers lower accuracy 
indicates lack of simple analytic expression.
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Background
• Large data sets of string vacua 

• Complete Intersection Calabi-Yau manifolds (CICY) 

• Kreuzer-Skarke database of reflexive polytopes and Calabi-Yau hypersurfaces in 
toric varieties  

• ML has been successfully used in studying topological properties of CY manifolds, 
including obtaining exact analytical results 

• CICY in 3 dimensions 

• CICY in 4 dimensions 

• CY hypersurfaces in weighted projective space
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Kreuzer-Skarke & Reflexive Polytopes
• In n=2 dimensions, 16 reflexive polytopes 

• In n=3 dimensions, 4319 reflexive polytopes  

• In n=4 dimensions, 473,800,776 reflexive polytopes 

• Batyrev’s mirror construction of CY M and W as hypersurfaces in toric varieties      
and         with the ambient spaces constructed from given triangulation of  the dual 
polytope         and       , respectively, 

• The dual polytope is also reflexive and given by

Let us briefly review what the polytope data provide. For toric geometry, we must specify

a reflexive polytope � and its dual �⇤. A polytope in R4 is the convex hull of finitely

many lattice points, the number of which is denoted by l(�). That is to say, we specify the

vertices with integer valued vectors. Pairs of neighboring vertices define an edge, collections

of edges define a face, etc. Adopting the nomenclature of [8], a polytope is said to have the

interior point (IP) property when it contains the origin as its sole interior point with integer

coordinates. The dual (polar) polytope is defined as

�⇤ = {v 2 R4
| hm, vi � �1 8m 2 �} , (2.1)

where the inner product hm, vi is calculated in R4. The polytope is reflexive when the vertices

of �⇤ are specified by integer vectors, and �⇤ shares the IP property, from which it follows

that (�⇤)⇤ = �. Furthermore, the convex hull of �⇤ consists of l(�⇤) points. The Calabi–

Yau hypersurface M is constructed as a generic section of the anticanonical bundle, �KX ,

on X�, and explicitly given by the following vanishing condition

0 =
X

m2�
am

Y

i

x
hm,v⇤i i+1
i , (2.2)

where the v⇤i are vertices of �⇤, xi are coordinates on the toric variety, X�, and am are

coe�cients that parameterize the complex structure of M . Exchanging � and �⇤ provides an

analogous construction of the mirror Calabi–Yau W , for which h1,1 and h2,1 are interchanged:

0 =
X

m2�⇤

bm
Y

i

yhm,vii+1
i , (2.3)

where now the vi are vertices of �, yi are coordinates on the “mirror” toric variety, X�⇤ , and

bm are coe�cients that parameterize the complex structure of the mirror manifold W .

In what follows, we as well introduce the scaled up polytopea k� and k�⇤, where k = 2

is the integer scale factor. Note that neither k� nor k�⇤ are reflexive polyhedra in their own

right. To define the scaled up objects, we simply multiply the vectors that define the vertices of

� and�⇤ by k = 2, with l(2�) and l(2�⇤) the number of points in the convex hull of the scaled

up polytopes, respectively. Remarkably, we find that specifying (l(�), l(�⇤), l(2�), l(2�⇤)),

i.e., the number of lattice points on �, and the corresponding data for �⇤, 2�, and 2�⇤, is

su�cient to machine learn topological invariants of the Calabi–Yau threefold.

Our analysis contrasts with machine learning e↵orts on complete intersection Calabi–Yaus.

There, the configuration matrix provides the complete information about how the geometry

is realized. Here, we are not even providing the full polytope data, viz., the vectors that

identify the vertices of � (and by duality, the vertices of �⇤). To specify the geometry, we

must go even further by triangulating the polytope.
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hypersurfaces in toric varieties from a limited amount of data describing four-dimensional

polytopes and dual polytopes taken from the Kreuzer–Skarke list [10, 29].2

Finally, it is well known that artificial intelligence methods excel at finding associations

between features in data. In certain cases, neural network based curve fitting has facilitated

the search for new analytic formulæ. Instances of this occur in examining line bundle coho-

mology on surfaces and on Calabi–Yau threefolds [31–34] and in analyzing the topological

invariants of knots [35–40]. Here we use the machine learning results concerning reflexive

polytopes to deduce new analytic expressions for topological invariants.

The organization of this paper is as follows. In Section 2, we review the Kreuzer–Skarke

data set. In Section 3, we detail the machine learning methods we employ. In Section 4, we

describe the machine learning predictions of toric Calabi–Yau threefold Hodge numbers from

four-dimensional reflexive polytope data. In Section 5, we present a new analytic expression

for the Euler number. In Section 6, we provide a prospectus for future work in this direction.

2 Kreuzer–Skarke Data

Kreuzer and Skarke tabulated all 473, 800, 776 reflexive polyhedra in four dimensions [9,

10]. Starting from any one of these polytopes, �, we can construct a four-dimensional toric

varietyX� in which the anticanonical hypersurface is a (possibly) singular Calabi–Yau variety

realized as a generic section of the anticanonical bundle of X� [7]. In general, each such

hypersurface may admit several maximal projective crepant partial desingularizations each

associated to a given triangulation of the dual polytope, �⇤, with distinct Stanley–Reisner

rings corresponding to di↵erent geometries. Furthermore, the same Calabi–Yau threefold

could as well arise from triangulating di↵erent four-dimensional reflexive polytopes. In one

lower dimension, this is what happens for K3: whereas there are 4319 reflexive polytopes in

three dimensions, any two complex analytic K3 surfaces are di↵eomorphic as smooth four

manifolds [41]. The Calabi–Yau twofold is essentially unique. In contrast, we do not have

even a rough enumeration of the corresponding Calabi–Yau threefolds. It is, however, likely

that this number is well in excess of the half a billion reflexive polytopes.

We focus our attention in this paper on a subset of the topological properties of the

Calabi–Yau spaces obtained from the polytope data. For the class of four-dimensional reflexive

polytopes there are 30, 108 unique pairs of Hodge numbers (h1,1, h2,1) of the associated Calabi–

Yau manifold. This sets a lower bound on the number of Calabi–Yau threefolds. Our goal

is to compute these topological invariants of a Calabi–Yau threefold using only minimal

information about the polytopes.

2
See also [30].
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anticanonical bundle O(�KX) of the toric variety X� is given by [48]

�(M) =

Z

X
c1(X)c2(X) =

X

✓2�
dim ✓=1

d(✓)d(✓⇤) , (5.6)

generalizing the standard result for the smooth case, cf. [53].

In n = 4 dimensions, the generalized Libgober–Wood identity for X� can be shown to be

given by [48]

12 (l(�)� 1) = 2d(�) +
X

✓2�
dim ✓=2

d(✓)d(✓⇤) , (5.7)

and similarly for �⇤,

12 (l(�⇤)� 1) = 2d(�⇤) +
X

✓⇤2�⇤
dim ✓⇤=2

d(✓⇤)d(✓) . (5.8)

Analogously to the n = 3 case, we can write

�(M) =

Z

X

⇥
c1(X)c3(X)� c21(X)c2(X)

⇤
=

X

✓2�
dim ✓=1

d(✓)d(✓⇤)�
X

✓2�
dim ✓=2

d(✓)d(✓⇤) . (5.9)

Using that dim ✓⇤ = n � 1 � dim ✓, it then follows that for a reflexive polytope in n = 4

dimensions, we can rewrite the right hand side of the expression for �(M) in terms of the

di↵erence of the Libgober–Wood identities for � and �⇤, respectively,

�(M) = 12 (l(�⇤)� l(�)) + 2 (d(�)� d(�⇤)) . (5.10)

Finally, we can express this in terms of the number of points, l(2�), l(2�⇤), of the twice

scaled up polytopes 2� and 2�⇤, respectively, using that [54]

d(�) = 2 + l(2�)� 3l(�) , d(�⇤) = 2 + l(2�⇤)� 3l(�⇤) , (5.11)

and hence,

�(M) = 2 (l(2�)� l(2�⇤)) + 18 (l(�⇤)� l(�)) . (5.12)

This agrees with the expression (4.5) found by linear regression. As a simple example, let us

consider � describing the Newton polyhedron associated with the degree five hypersurface

M in X = P4, for which we know (h1,1, h2,1) = (1, 101). Using the Kreuzer–Skarke database

one finds that l(�) = 126, l(�⇤) = 6 [10], and furthermore calculates that l(2�) = 1001 and

l(2�⇤) = 21. The above expression for the Euler number correctly gives �(M) = �200.
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even a rough enumeration of the corresponding Calabi–Yau threefolds. It is, however, likely

that this number is well in excess of the half a billion reflexive polytopes.

We focus our attention in this paper on a subset of the topological properties of the

Calabi–Yau spaces obtained from the polytope data. For the class of four-dimensional reflexive

polytopes there are 30, 108 unique pairs of Hodge numbers (h1,1, h2,1) of the associated Calabi–

Yau manifold. This sets a lower bound on the number of Calabi–Yau threefolds. Our goal

is to compute these topological invariants of a Calabi–Yau threefold using only minimal

information about the polytopes.

2
See also [30].
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Neural Network
• Five hidden layers w/300 neurons/layer 

• ReLu activation 

• Adam algorithm + logit cross entropy loss fct 

• 80/20 split of training/testing 

• 106 randomly selected 4d reflexive polytopes 

• 106 boundary 4d reflexive polytopes 

• Input data  

• Four different labels 

• Euler number 

• h11 

• h21 

• h11+h21

Implementation using Julia 1.6.2 and the Flux package

Figure 1. Distribution of randomly sampled data as

a plot of h1,1
� h2,1 vs. h1,1 + h2,1. Blue represents

an (h1,1, h2,1) pair for which a polytope has been

randomly selected.

Figure 2. Distribution of boundary data as a plot

of h1,1
� h2,1 vs. h1,1 + h2,1. Red represents an

(h1,1, h2,1) pair for which all polytopes with this data

are sampled.

v = (l(�), l(�⇤), l(2�), l(2�⇤)), that is the number of lattice points on �, its dual �⇤, as well

as the twice scaled up polytopes, 2�, and 2�⇤, respectively, data which are calculated from

any given Kreuzer–Skarke polytope �. The set of hyperparameters is chosen to maximize

accuracy in training � = 2(h1,1�h2,1). No appreciable di↵erence in accuracy was found when

di↵erent sets of optimal hyperparameters were obtained from training to predict h1,1, h2,1,

and h1,1 + h2,1.

The mirror symmetric plot of h1,1 + h2,1 vs. h1,1 � h2,1 is densely populated in the center.

As a result, the majority of the randomly selected data comes from this region. The machine

learning trials were therefore repeated using only data on the boundary, where the boundary is

approximated by four linear conditions for ease, see Figure 2. Models were trained to predict

�, h1,1, h2,1, and h1,1+h2,1 with the same 80% training to 20% testing ratio as in the original

set of experiments.3 The data are again split and shu✏ed before each model was trained.

The set of hyperparameters was varied, though no considerable change in performance was

obtained compared to the values used for the original randomly selected data set. However,

the maximum number of training epochs was increased to 100 as this allowed for improvement

in accuracy as opposed to the randomly sampled data.

4 Numerical Results

A plot of h1,1 � h2,1 vs. h1,1 + h2,1 for the randomly selected data and the chosen boundary

data are shown in Figures 1 and 2, respectively. Models are trained to predict �, h1,1, h2,1,

3
The case h1,1

+h2,1
was included as the natural “dual” expression to �, though in fact the testing accuracy

was the lowest of the di↵erent labels used.
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Numerical Results
Label Accuracy (%) Absolute Error Relative Absolute Error

� 97.36± 1.42 0.1746± 0.1941 0.0049± 0.0099

h1,1 46.89± 0.91 0.7099± 0.0966 0.0222± 0.0029

h2,1 46.74± 1.03 0.7262± 0.0896 0.0227± 0.0026

h1,1 + h2,1 32.64± 0.27 1.464± 0.046 0.0214± 0.0006

Table 1. Mean accuracy, absolute error, and relative absolute error for model predictions on each label

trained and tested on the randomly sampled data. Averages and standard deviations are taken over 100

models for each label. The total data is shu✏ed before being split into 80% training and 20% testing sets

for each model.

Label Accuracy (%) Absolute Error Relative Absolute Error

� 96.02± 1.24 0.2560± 0.0702 0.0035± 0.0018

h1,1 75.35± 1.08 0.3142± 0.0494 0.0090± 0.0008

h2,1 75.48± 0.78 0.3131± 0.0632 0.0089± 0.0009

h1,1 + h2,1 67.77± 1.60 0.7122± 0.0649 0.0075± 0.0007

Table 2. Mean accuracy, absolute error, and relative absolute error for model predictions on each label

trained and tested on the boundary data. Averages and standard deviations are taken over 100 models for

each label. The total data is shu✏ed before being split into 80% training and 20% testing sets for each

model.
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Figure 3. Confusion matrix for model trained on

randomly sampled data evaluated on randomly sam-

pled data. This model achieved an accuracy of

99.25% and mean absolute error of 0.0123. The

range has been cropped to � 2 [�300, 300] as the

majority of the data is in this interval.
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Figure 4. Confusion matrix for model trained on

boundary data evaluated on boundary data. This

model achieved an accuracy of 96.43% and a mean

absolute error of 0.1339. The range has been

cropped to � 2 [�300, 300] for comparison with Fig-

ure 3.
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Confusion Matrices
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Linear Regression
• High accuracy of ML predictions, especially for the Euler number, points to possible exact 

expression in terms of the input data 

• Random sample of 200,000 reflexive polytopes and their duals. 

• Applying linear regression on input data for 100,000 polytopes and their duals out of the 
above set, repeated 100 times: 

• Accuracy of 44% and 46%, respectively, when rounding to nearest integer, with an 
additional 44% and 42% allowing for prediction to be off by +/-1.

The ability of the neural network to predict the topological invariants with some accuracy

suggests the existence of approximate analytic formulæ. To test this hypothesis, we considered

a random sample of 200, 000 four-dimensional reflexive polytopes and their mirrors from the

Kreuzer–Skarke list. Taking the number of points in l(�), the number of points in l(�⇤),

the number of points in l(2�), and the number of points in l(2�⇤), we performed a linear

regression on these data to fit expressions for h1,1 and h2,1 using Mathematica 12.3.1 [46].

Selecting half of these polytopes and their mirrors at random and repeating the regression

100 times, we find:

h1,1 = �(3.33± 0.05)� (3.471± 0.005)l(�) + (5.529± 0.005)l(�⇤) +

+(0.4176± 0.0007)l(2�)� (0.5824± 0.0007)l(2�⇤) , (4.2)

h2,1 = �(3.33± 0.05) + (5.529± 0.005)l(�)� (3.471± 0.005)l(�⇤) +

�(0.5824± 0.0007)l(2�) + (0.4176± 0.0007)l(2�⇤) . (4.3)

Plugging in the values of l(�), l(�⇤), l(2�), and l(2�⇤) into (4.2) and rounding to the nearest

integer predicts h1,1 correctly 44% of the time. The prediction is o↵ by one another 44% of

the time. In total, the mean of the absolute value of the error in the prediction is 0.70± 0.85

on the full data set. Similarly, the prediction of h2,1 in (4.3) is correct 46% of the time and o↵

by one 42% of the time. In total, the mean of the absolute value of the error in the prediction

is 0.70± 1.09.

If we fit instead to h1,1 + h2,1 and h1,1 � h2,1, we find

h1,1 + h2,1 = �(6.64± 0.01) + (2.06± 0.01)
⇣
l(�) + l(�⇤)

⌘

�(0.165± 0.001)
⇣
l(2�) + l(2�⇤)

⌘
, (4.4)

1

2
� = h1,1 � h2,1 = 9

⇣
l(�⇤)� l(�)

⌘
+
⇣
l(2�)� l(�⇤)

⌘
. (4.5)

The formula for the sum of the Hodge numbers (4.4) is exactly correct 23% of the time and

o↵ by one 38% of the time. The mean of the absolute value of the error in the prediction is

1.45± 1.39. The formula for the di↵erence of the Hodge numbers (4.5), on the other hand, is

exact. The coe�cients in the fit are integer and have zero error. The prediction is perfect for

every polytope. We will now derive this expression as a new analytic formula for the Euler

number.

5 Analytic Formulæ

In what follows, we will focus on the so called stringy topological data as originally introduced

by Batyrev in the context of reflexive polytopes, �, and the associated toric varieties, X� [7,

– 9 –
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• Repeat for the sum and differences of the Hodge numbers 

• Lower accuracy for the sum of Hodge numbers, with correct accuracy only 23% and 
38% when allowing for being off by +/- 1. 

• Exact result for the Euler number!

The ability of the neural network to predict the topological invariants with some accuracy

suggests the existence of approximate analytic formulæ. To test this hypothesis, we considered

a random sample of 200, 000 four-dimensional reflexive polytopes and their mirrors from the
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o↵ by one 38% of the time. The mean of the absolute value of the error in the prediction is
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every polytope. We will now derive this expression as a new analytic formula for the Euler

number.

5 Analytic Formulæ
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Analytic Formulae
• Stringy Libgober-Wood identity, relating combinatorial data of polytope        and its 

dual        to topological data of the toric variety  

• Here the sum on the RHS is over the (n-2) faces with 

•                   encodes topological information about 

47, 48].4 The main idea is that certain topological invariants, including the Hodge numbers

and in particular the Euler number, are independent of the choice of the so called crepant

desingularization of X� [50, 51].

Starting from the Ehrhart series,

P�(t) =
X

k�0

l(k�)tk , (5.1)

we use that we can rewrite this as

P�(t) =
�(t)

(1� t)n+1
, (5.2)

where n = dim�. Here, we have introduced the Ehrhart polynomial,

�(t) =
nX

i=0

 i(�)ti , (5.3)

where  i(�) encode topological information about the toric variety X�. For a reflexive

polytope, the  i(�) satisfy  n�i(�) =  i(�), where we in addition know that  0(�) = 1

since l(0�) = 1. By expanding the geometric series we can determine the  i(�) in terms

of the l(k�). In particular, from the above it then follows that  1(�) = l(�) � n � 1 and

 2(�) = l(2�)� (n+ 1)l(�) + n(n+ 1)/2.

Libgober and Wood showed that there exists an identity relating c1(X)cn�1(X) and the

Hodge numbers, hp,q(X) for X a smooth projective variety [52]. This was generalized by

Batyrev, et al. to any toric variety X� associated to a reflexive polytope � in terms of the

combinatorial data of � [7, 47, 48],

nX

i=0

 i(i�
n

2
)2 =

n

12
d(�) +

1

6

X

✓2�
dim ✓=n�2

d(✓)d(✓⇤) . (5.4)

Here d(✓) refers to the so called degree of the face ✓ 2 � and is given by d(✓) = (n�2)!Vol(✓).

In particular, d(�) is the volume of �, up to the factor of n!. For the case n = 3, this leads

to the statement that all K3 surfaces have � = 24:

�(M) =
X

✓2�
dim ✓=1

d(✓)d(✓⇤) = 24 . (5.5)

In writing this expression, we have used the fact that the Euler number � for the case of

a Calabi–Yau hypersurface M defined by the anticanonical divisor �KX associated to the

4
Related work on calculating the stringy Chern classes, ci(X), in terms of the combinatorial data for more

general polytopes � can be found in [49].
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anticanonical bundle O(�KX) of the toric variety X� is given by [48]

�(M) =

Z

X
c1(X)c2(X) =

X

✓2�
dim ✓=1

d(✓)d(✓⇤) , (5.6)

generalizing the standard result for the smooth case, cf. [53].

In n = 4 dimensions, the generalized Libgober–Wood identity for X� can be shown to be

given by [48]

12 (l(�)� 1) = 2d(�) +
X

✓2�
dim ✓=2

d(✓)d(✓⇤) , (5.7)

and similarly for �⇤,

12 (l(�⇤)� 1) = 2d(�⇤) +
X

✓⇤2�⇤
dim ✓⇤=2

d(✓⇤)d(✓) . (5.8)

Analogously to the n = 3 case, we can write

�(M) =

Z

X

⇥
c1(X)c3(X)� c21(X)c2(X)

⇤
=

X

✓2�
dim ✓=1

d(✓)d(✓⇤)�
X

✓2�
dim ✓=2

d(✓)d(✓⇤) . (5.9)

Using that dim ✓⇤ = n � 1 � dim ✓, it then follows that for a reflexive polytope in n = 4

dimensions, we can rewrite the right hand side of the expression for �(M) in terms of the

di↵erence of the Libgober–Wood identities for � and �⇤, respectively,

�(M) = 12 (l(�⇤)� l(�)) + 2 (d(�)� d(�⇤)) . (5.10)

Finally, we can express this in terms of the number of points, l(2�), l(2�⇤), of the twice

scaled up polytopes 2� and 2�⇤, respectively, using that [54]

d(�) = 2 + l(2�)� 3l(�) , d(�⇤) = 2 + l(2�⇤)� 3l(�⇤) , (5.11)

and hence,

�(M) = 2 (l(2�)� l(2�⇤)) + 18 (l(�⇤)� l(�)) . (5.12)

This agrees with the expression (4.5) found by linear regression. As a simple example, let us

consider � describing the Newton polyhedron associated with the degree five hypersurface

M in X = P4, for which we know (h1,1, h2,1) = (1, 101). Using the Kreuzer–Skarke database

one finds that l(�) = 126, l(�⇤) = 6 [10], and furthermore calculates that l(2�) = 1001 and

l(2�⇤) = 21. The above expression for the Euler number correctly gives �(M) = �200.
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47, 48].4 The main idea is that certain topological invariants, including the Hodge numbers

and in particular the Euler number, are independent of the choice of the so called crepant

desingularization of X� [50, 51].

Starting from the Ehrhart series,

P�(t) =
X

k�0

l(k�)tk , (5.1)

we use that we can rewrite this as

P�(t) =
�(t)

(1� t)n+1
, (5.2)

where n = dim�. Here, we have introduced the Ehrhart polynomial,

�(t) =
nX

i=0

 i(�)ti , (5.3)

where  i(�) encode topological information about the toric variety X�. For a reflexive

polytope, the  i(�) satisfy  n�i(�) =  i(�), where we in addition know that  0(�) = 1

since l(0�) = 1. By expanding the geometric series we can determine the  i(�) in terms

of the l(k�). In particular, from the above it then follows that  1(�) = l(�) � n � 1 and

 2(�) = l(2�)� (n+ 1)l(�) + n(n+ 1)/2.

Libgober and Wood showed that there exists an identity relating c1(X)cn�1(X) and the

Hodge numbers, hp,q(X) for X a smooth projective variety [52]. This was generalized by

Batyrev, et al. to any toric variety X� associated to a reflexive polytope � in terms of the

combinatorial data of � [7, 47, 48],

nX
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 i(i�
n

2
)2 =

n

12
d(�) +

1

6

X

✓2�
dim ✓=n�2

d(✓)d(✓⇤) . (5.4)

Here d(✓) refers to the so called degree of the face ✓ 2 � and is given by d(✓) = (n�2)!Vol(✓).

In particular, d(�) is the volume of �, up to the factor of n!. For the case n = 3, this leads

to the statement that all K3 surfaces have � = 24:

�(M) =
X

✓2�
dim ✓=1

d(✓)d(✓⇤) = 24 . (5.5)

In writing this expression, we have used the fact that the Euler number � for the case of

a Calabi–Yau hypersurface M defined by the anticanonical divisor �KX associated to the

4
Related work on calculating the stringy Chern classes, ci(X), in terms of the combinatorial data for more

general polytopes � can be found in [49].
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4



Summary

• Analyzed a large (randomly selected) set of reflexive polytopes from the n=4 
Kreuzer-Skarke database using ML. 

• NN is able to learn/extract/discover an analytic expression for the Euler number 
given a very limited input data: 

• The accuracy for predicting the individual Hodge numbers varies from 46% to 75%, 
indicating that such a simple expression does not exist for, except for the so called 
favorable cases where

Figure 1. Distribution of randomly sampled data as

a plot of h1,1
� h2,1 vs. h1,1 + h2,1. Blue represents

an (h1,1, h2,1) pair for which a polytope has been

randomly selected.

Figure 2. Distribution of boundary data as a plot

of h1,1
� h2,1 vs. h1,1 + h2,1. Red represents an

(h1,1, h2,1) pair for which all polytopes with this data

are sampled.

v = (l(�), l(�⇤), l(2�), l(2�⇤)), that is the number of lattice points on �, its dual �⇤, as well

as the twice scaled up polytopes, 2�, and 2�⇤, respectively, data which are calculated from

any given Kreuzer–Skarke polytope �. The set of hyperparameters is chosen to maximize

accuracy in training � = 2(h1,1�h2,1). No appreciable di↵erence in accuracy was found when

di↵erent sets of optimal hyperparameters were obtained from training to predict h1,1, h2,1,

and h1,1 + h2,1.

The mirror symmetric plot of h1,1 + h2,1 vs. h1,1 � h2,1 is densely populated in the center.

As a result, the majority of the randomly selected data comes from this region. The machine

learning trials were therefore repeated using only data on the boundary, where the boundary is

approximated by four linear conditions for ease, see Figure 2. Models were trained to predict

�, h1,1, h2,1, and h1,1+h2,1 with the same 80% training to 20% testing ratio as in the original

set of experiments.3 The data are again split and shu✏ed before each model was trained.

The set of hyperparameters was varied, though no considerable change in performance was

obtained compared to the values used for the original randomly selected data set. However,

the maximum number of training epochs was increased to 100 as this allowed for improvement

in accuracy as opposed to the randomly sampled data.

4 Numerical Results

A plot of h1,1 � h2,1 vs. h1,1 + h2,1 for the randomly selected data and the chosen boundary

data are shown in Figures 1 and 2, respectively. Models are trained to predict �, h1,1, h2,1,

3
The case h1,1

+h2,1
was included as the natural “dual” expression to �, though in fact the testing accuracy

was the lowest of the di↵erent labels used.
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6 Discussion and Prospectus

Neural networks are universal approximators [55, 56]. This means that the output of the first

layer of a finite width neural network can approximate any suitably well behaved function

on a compact subset of Rn. We have obtained an analytic expression for the Euler number

�(M) from data about points on the reflexive polytope �, its dual and the scaled up versions

of these, respectively, where M is given by the anticanonical divisor �KX of the toric variety

X� associated to �. Since the data, l(�), l(�⇤), l(2�), and l(2�⇤), are integer valued, there

are many suitable functions. With a simple architecture, the neural network approximates

one of these. The better than 96% accuracy further suggests that these results should be

analyzed from the perspective of probably approximately correct learning [57]. The lower

accuracy of the predictions of h1,1(M), h2,1(M), and the sum h1,1 + h2,1(M) indicates that

there probably is not a similarly simple formula for these topological invariants based on the

minimal data we have provided.

The accuracy for predicting h1,1 and h2,1 is considerably higher for data along the bound-

ary. This may be explained by the fact that there do exist exact expressions for the individual

Hodge numbers for special classes of reflexive polytopes, �, such that h2,1 = l(�) � 5, and

similarly for the dual polytopes, �⇤, with h1,1 = l(�⇤) � 5.5 These classes of polytopes do

indeed occur to a larger degree along the boundary.

It would be interesting to determine what other data we can add to get more precise

predictions of the individual Hodge numbers. Clearly, knowing the lattice points of the

polytope is enough to compute these quantities, but perhaps we can get away with supplying

less information in the input. It would also be interesting to test whether quantities like the

Kähler cone and the Mori cone can be machine learned.

Calabi–Yau manifolds are an important testbed for applying machine learning to problems

in string theory. We have focused our attention in this paper on the Hodge numbers. The

success of machine learning methods in this endeavor may point to structural features in the

data set taken as a whole. Based on [58], Reid famously conjectured that the moduli space

of Calabi–Yau threefolds is connected through conifold transitions and that any Calabi–Yau

geometry may be obtained from the small resolution of degenerations within this family [59].

Perhaps this insight is at the heart of the machine learned relationships. (Similar speculations

appear in [60].)

5
The latter case corresponds to the statement that h1,1

(M) = dimPic(X�), the Picard number of the

ambient space.
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and/or



Outlook

• What is required (additional input data) to learn other topological data? 

• How to extend analysis to n=5—can we use ML to to study elliptically fibered CY 
fourfold? 

• No complete classification of reflexive polytopes exists—can ML be used in this 
classification? 

• More general polytopes/generalized constructions of CYs—can ML be extended 
beyond reflexive polytopes 

• gCICY 

• VEX polytopes/triangulations


