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Introduction




String theory and machine learning (ML)

Much of the work so far for string theory and supervised ML

A remarkable variety of different types of data turns out fo be
susceptible to supervised ML methods:

Line bundle cohomology, Calabi-Yau Hodge numbers, properties of hadrons,

data for toric varieties, certain classes of string models, AdS/CFT models, knot data, . . .

For review see: F. Ruehle, Phys. Rep. 839, 1-117, 2020

Large string data sets require effective search algorithms:

Reinforcement learning (RL) known to be efficient for large
environments (AlphaGo Zero)

J. Halverson, B. Nelson, F. Ruehle, 1911.07835
M. Larfors, R. Schneider, 2003.04817
S. Krippendorf, R. Kroepsch, M. Syvaeri, 2107.04039



String theory and genetic algorithms (GAs)

Long history outside our field starting in 1960’
J. Holland, “Adaption in Natural and Artificial Systems”, 1975

GAs are known to lead to efficient search algorithms

So far, only sporadically used in our field:
Abel, Rizos, 1404.7359, Abel, Cerdeno, Robles 1805.03615,
Cole, Schachner, Shiu, 1907.10072,

Abel, Constantin, Harvey, Lukas 2110.14029

Cole, Krippendorf, Schachner, Shiu, 2111.11466



Q: Can RL/GA be used for string model building?

e Can RL/GAs “construct” models with prescribed properties?
e Can RL/GAs discover model building strategies?

® Can RL/GAs be used for a comprehensive search?

e How do the two methods compare?

Study these questions for heterotic vacua based on a CY manifold
X and a vector bundle V. — X constructed from a monad.



Reinforcement learning
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Application to model building

Goal: Explore large classes of string models and find those with
certain prescribed properties, such as having a SM spectrum

MDP > physics context
Environment - family of (QFT) string models
states g specific models
action > typically small modification of model
reward - measure for how much desirable

features of model improve
Two examples:

e Froggatt-Nielsen models for quark masses T Harvey, A.L. 2103.04759

e Heterotic CY models with monad bundles < here

Algorithm:
REINFORCE and Actor-Critic algorithms, realised as Mathematica
packages



Line bundles and RL - a toy example




Mathematical background

Lines bundles L = O(k) — X on CY X classified by integer vectors
k= (k',..., k") where h = h"(X).

index of line bundle:

. 1 L .
1nd(L) — E( dijlkzk]kl + CQZ(TX)IZCZ)
CY ftriple intersection second Chern class
numbers of CY tangent bundle

idea: would like to train a neural network to find line bundles
with a given target index



RL setup for line bundles

Goal: Find line bundle with target index.

MDP

>

line bundles on a fixed CY

Environment

states

action

discount

reward

all k € Zh with ’kZ’ < kmaX
k e Z"

kP 5 k'+1 (deterministic)

v = 0.98

value V = —‘Hld(O(k)) — indtarget’
reward function of change in value



Results
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The trained policy network

¢ leads to terminal states for 100% of 32 step episodes

® has an average episode length of 5.7 steps

® has already found all terminal states during training



Plot of environment




basins of attraction for terminal states
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Scaling of search algorithms:

e systematic scan ~ total number of states

e RL ~ number of terminal states



Monad string models and RL




How large is the monad environment?

Definition of monads, based on line bundle sums:

05V >BL oo V = Ker(f)
"B TC

B=P0Ox((s) C=EP0x(ca) ~ 10"+~ states
a=1 a=1

Even small cases unexplored, for example
h=2 rg=6, rc=1 ~ 10'? states

h=3 rg=6,r.=1 ~ 10'® states

I am not aware of a ““trick” that would allow for a systematic
scanning in these cases . . .

Only a few phenomenologically promising models known . . .



RL setup for heterotic monads

Goal: Explore monads on a given CY and find standard models.

MDP g monads on a fixed CY with ci(B) = ci1(C)

Environment > all (B7 C) with { bmln = ba ~ bmax

1
Cmin S C, S Cmax

states - (B,0)
. bg — bé + 1 C
action > { S (deterministic)
discount > v = 0.98

value = -deviation from desired
properties, reward from value

reward >

terminal state > a standard model



a) Bi-cubic, SO(10) GUT, T’ = Z3 x Zs Wilson line, negative entries

—3, bmax =9, Conin = 0, Cmax =9, T8 =6, 7. = 2 —  ~ 10 states

bmin

Training measurements (about 1h on single CPU)
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¢ training based on tiny sample of environment

¢ 100% of all length 32 episodes terminal, average length 15.5

e find few x 10 terminal states, 10-20 stable, with no mirror-families



Use trained network for systematic search

Carry out many episodes with random initial states (35 core days)

inequiv. perfect states
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e Saturation suggests all models are found (about 600)

e Many new standard-like models found
e Difficult fo find these models with a systematic scan

e Includes the one known standard model
(L. Anderson, J. Gray, Y.-H. He, A.L., 0911.1569)



b) tri-linear, SO(10) GUT, T = Z3 x Z3 Wilson line, negative entries

P- 1
X~ | P? 1
P- 1

bmin — _37 bmax — 57 Cmin — O) Cmax — 57 rB = 67 e — 2 —> o~ 1019 states

—_
p—

® fraining about 1d on single CPU
¢ training based on tiny sample of environment
¢ 100% of all length 32 episodes terminal, average length 22

e 13000 terminal states, 7500 without mirror-families, O(500) stable

-> a new database of standard-like models, virtually impossible to
find with standard scanning methods



Model building strategies suggested by RL
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Figure 7: The different contribtutions to the intrinsic value for (r4,7.) = (6,2) bicubic models. This
data is averaged over 1000 termianl states using the trained network.



Genetic algorithms




How do genetic algorithms perform on a monad environment?
(S. Abel, A. Constantin, T. Harvey, AL, 2110.14029, 211107333)

convert to binary

e monad (B, () » (010010---0110

e assign fitness” to each monad = value function of RL

e create population (250 individuals in our case)

010010---010,  110111---010, ------ 1101001 - - - 110

evolve by crossing (controlled by fitness)
and mutation

\4

e goal: after a number of generations the population has
many fit individuals (= terminal states)



Example bicubic
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Produces some terminal states extremely efficiently (minutes!)

Example tri-linear
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Systematic GA search

Repeated GA evolutions for bi-cubic (10 core days)

inequiv. perfect states
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e Saturation suggest all terminal states found

e Terminal states largely the same as found from RL

e GA more efficient than RL (for our realisations) for finding
a few states quickly and for comprehensive search



Conclusion




e RL can engineer topological properties and can™learn” the rules
for geometrical string model building

e RL suggests model building strategies

e At small "' (X) RL can be used for a comprehensive search
within environments too large for a systematic scan

e GAs work extremely efficiently as well - confirm RL results

e Many new standard-like models found in this way

e Questions/extensions:

SU(5) models, including other model-building constraints, different string constructions,
including gravitational sector, . . .

How does computing/training time scale with b (X)?
Can RL or GA be used for a complete scan of the landscape?

Ttanks



Value=fitness and reward
Value measures degree of deviation from desired properties:

o c1(V) =c1(B)—c1(C) =0 (built into environment)
!
e anomaly c2(V) < co(TX)

e “bundleness”: V a bundle rather than a sheaf

e very basic check for bundle supersymmetry

e number of chiral families of ok, ind(V)/|T| = 3
® basic check for bundle I'-equivariance

Anything that involves calculating cohomology too slow during
training -> needs checking later

Reward: some function of the change in value + terminal bonus



