
To appear (early 2022)
Offshoot of discussions w/ J. Batson, Y. Kahn, D. Roberts on inflation and optimization



For many problems one needs to minimize an objective (`Loss’) function V, 
descending a generally non-convex high dimensional landscape.

--data analysis/machine learning
-- PDE solving,  Loss = :   want global min

Gradient descent methods and variants can work well, but sometimes get 
stuck at a (high) local minimum and/or don’t sample all desired solutions.

Early U cosmology:  models for 
descending a potential landscape V.
--Example: DBI: relativistic speed 
limit as without friction, 
consistent with energy conservation 

cf Relativistic Gradient Descent Franca et al ‘19 (with constant speed limit)



Lightning intro to NN’s for PDE solving  Cf Lagaris, Likas, Fotiadis ‘97,…, 
Many talks ML for Calabi–Yau
metrics, Ricci flow, etc.; DL S T’21:
fields in hyperbolic 
compactification

Repeated application builds up nonlinear 
output functions/ansatzes

Points sampled from 
domain of PDE

Then form loss functional: e.g.
 

,

Output functions (ansatzes for
functions being solved for)

Descend the loss landscape via gradient 
descent or generalizations



Early U inflation requires nearly constant 

• Slow roll (flat potential, Hubble friction dominates)
• Interactions slow the field, e.g. DBI inflation: speed limit -dependent

Testable (falsifiable(?)) via 
non-Gaussianity
( equilateral shape)
[`String Data’]

Planck

Distinct behavior and predictions from slow roll 



Non-gravitational 
version conserves 
energy (no friction), 
only stopping at V=0

Phase space volume strongly dominated near global minimum:

 Cannot stop at local min, 
even without stochastic noise 
(but can get stuck in orbit).  
Cannot overshoot V=0. 

Distinct behavior from gradient descent 



Many variations on this theme, e.g. 

• `Log inflation’ mechanism with log rather than square root
branch cut  speed limit.  From integrating out flavor fields:

• 2-derivative action with mass ~ 1/Loss

(w/Mathis, Mousatov, Panagopoulos ‘20):



As an energy conserving dynamical system in a rich loss landscape (without 
symmetries), BI can easily be chaotic, with random initialization avoiding stable orbits.  

But if a particular problem (NN & Loss function) leads to long-lived orbits, we can add 
extra features to the algorithm (as in chaotic billiards problems) to stimulate faster 
mixing 
Toy Example:    𝟐 𝟐 ,   

With added feature (unstuck):Original problem (stuck in orbit):



Our redshifted BI 
dynamics is a bit like 
galactic dynamics, 
solar system, … 
where chaos (as well 
as long lived orbits) 
is familiar.

We add elements 
aimed at ensuring 
rapid mixing.

(Manos and Machado MNRAS ‘14).  



Adding dispersing elements, (e.g. billiards or negative curvature)  supports 
mixing (decay of correlations) 

After some time, for a particle in a droplet and phase space region R, 

(>ergodicity:  )





BI algorithm:

Underlying discrete 
dynamics:

Plus:
• Initialization:  option for E > V(t=0)
• E conservation enforced throughout (by rescaling 

of 
• Option:  not enough progress down V => bounces: 

• Option:  user defined intervals => bounces 
regardless of progress (to help trajectories 
rapidly mix)  



Measure in different regions gives predicted distribution over all solutions (given 
mixing):

V<< E:  

Near minima:

We can check this distribution using our discretized algorithm:



Theory:

Experiment:

Agreement within 10%.



On our PDE, the BI optimizer solves the PDE (finding multiple solutions)

BI

1d slice of domain



BI (and other frictionless, E 
conserving dynamics)

SGD-momentum (and anything 
friction-based)

Conservative Hamiltonian Dynamics Friction => contraction of  phase space

Cannot get stuck in local minimum Can contract to local minimum 

Cannot overshoot V=0 Can overshoot V=0

Evolution on shallow region:
�̇� ∼ √| 𝜃 − 𝜃 ⋅ 𝜕𝑉 |

Evolution on shallow region slower:

|𝜃|̇ ∼ |
𝜕𝑉

𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
|

Analytic prediction for distribution 
among multiple solutions (given 
mixing), with same initialization

Intuition that can cover multiple 
solutions via distribution of  
initializations + stochasticity

Can choose 𝑉 to stop at any value of  
loss

`early stopping’ sometimes used

These statements persist with noise (mini-batches) in our prescription, 
more below…



Rastrigin function 
(non-convex test function for optimization)

n=5, following hyper-parameter optimization

GD may be helped by `catapult’ mechanism 
Lewkowycz et al ‘20, .  But it appears less 
predictable (bounces out of  the basin of  the 
minimum:



400-dimensional Rastrigin function + 
(non-convex test function for optimization)



Zakharov function (benchmark): shallow valley  

d=10 Zakharov



Noisy case (mini-batches):
  

Time dependent potential (nonetheless we renormalize to the original E).
One can think of a given batch trajectory as deterministic.
Retains the main features:

• Cannot stop at local minimum (V>0)
• Will stop at global minimum due to speed limit

Also interesting to study ensemble averages, generalized Brownian motion:



Discrete Fluctuation-Dissipation relations generalizing Yaida ’18 (SGD+momentum)

Careful continuum limit with noise:

No friction term

Contrast to SGD+momentum: 
e.g. Kunin Sagastuy-Brena, Gillespie, Tanaka, Ganguli, Yamins ‘21



Late-time Brownian motion (preliminary comparison):

Normally ( somewhat like in SGD-momentum):     

BI:      …+ d

BI explores the landscape in a very different way, with or without noise. 

Distinctive behavior vis a vis local and global minima persists with noise.



Cifar image data set (all optimizers work)



Application to PDEs in new mechanism for from string theory  
(w/G.B. De Luca, G. Torroba ‘21):

M theory (EFT:  11d SUGRA) on finite-volume 
hyperbolic space with small systole, automatically-
generated Casimir energy, 7-form flux yields 
immediate volume stabilization. 

Strong positive Hessian 
contributions from hyperbolic 
rigidity and from warping
(redshifting) effects on 
conformal factor and on Casimir 
energy.



4d effective potential 
Douglas ‘09

u(y) satisfies GR constraint (its equation of motion): 

Like a Schrodinger 
problem for 



warmup example:

Loss 

Slice of approximate  
solution for warp and 
conformal factors;



Numerical study of this class of compactifications is fully specified 
and well-posed, including the stress-energy sources relevant for dS:

• explicit projection of  , can also be constructed as 
gluing of  explicit set of  polygons. 

• Casimir energy
• solution explicit in terms of  metric
• Parametric limit(s) involving covers and filled cusps to 

compare to.

For ML, can consider PDE’s, , or slow roll functionals as 
natural loss functions to explore. 



={W, b}  

Summary:

BI for AI
(et al)

• Energy-conserving dynamics (no friction), yet slows at Loss , cannot 
overshoot V=0, cannot get stuck in local minimum

• If mixing (as well as ergodic), spends large fraction of time near
in phase space and captures multiple solutions

So far, spent few resources (in defining and testing the algorithm and its 
agreement with theory).  
Future plans:  apply to scientific ML (e.g. large-scale structure,…,protein folding), 
higher-dimensional PDEs (including landscape, Veff etc), other data sets.


