Triangle Singularities in the Production of T_{cc} +(3875)

Eric Braaten
Ohio State University

Triangle Singularities in the Production of T_{cc} +(3875)

collaborators:

Li-Ping He, Kevin Ingles (Ohio State University)

Jun Jiang (Shandong University)

BHIJ = Braaten, He, Ingles & Jiang

Triangle Singularities in the Production of T_{cc} +(3875)

• S-wave near-threshold molecules: T_{cc} +(3875) and X(3872)

- Single Parton Scattering and Double Parton Scattering
- Triangle singularities

Multiplicity dependence

$$X(3872) \equiv \chi_{c1}(3872)$$

discovery by Belle 2003

$$B^+ \rightarrow K^+ X$$
, $X \rightarrow J/\psi \pi^+\pi^-$

- mass extremely close to $D^{*0}\bar{D}^0$ threshold $E_X = M_X - (M_{D^{*0}} + M_{D^0}) = (-0.07 \pm 0.12)$ MeV LHCb 2020 $E_X > -0.22$ MeV at 90% CL
- <u>quantum numbers</u> J^{PC} = 1++ LHCb 2013
 ⇒ S-wave coupling to the charm mesons

Conclusion:

X is a loosely bound charm-meson molecule!

$$X(3872) = (D^{*0}\bar{D}^{0} + D^{0}\bar{D}^{*0})/\sqrt{2}$$

with universal properties determined by binding energy

T_{cc} +(3875)

discovery by LHCb 2021

$$p p \rightarrow T_{cc}^+ + anything, T_{cc}^+ \rightarrow D^0 D^0 \pi^+$$

- mass extremely close to $D^{*+}D^{0}$ threshold $E_{T} = M_{T} - (M_{D^{*+}} + M_{D^{0}}) = (-0.27 \pm 0.06)$ MeV LHCb 2021
- quantum numbers J^P = 1+?
 ⇒ S-wave coupling to the charm mesons

Conclusion:

 T_{cc} is a loosely bound charm-meson molecule!

$$T_{cc}$$
+(3875) = D^* + D^0

(plus small mixture of $D^{*0}D^{+}$)

with <u>universal</u> properties determined by binding energy

S-wave Resonance near Threshold

has universal properties determined by binding energy $|E_X|$

- constituents have large scattering length: $a = 1/\sqrt{2\mu |E_X|}$
- universal wavefunction: $\psi(r) = \exp(-r/a)/r$
- large mean separation of constituents: $\langle r \rangle = a/2$

$$X(3872)$$
: $|E_X| < 0.22 \text{ MeV} \implies \langle r \rangle > 4.8 \text{ fm}$

$$T_{cc}^+$$
(3875): $|E_X| = 0.27 \pm 0.06 \text{ MeV} \implies \langle r \rangle = 4.3 \pm 0.6 \text{ fm}$

Proton-Proton Collisions at LHC

- protons are Lorentz contracted to thin disks
- disks collide with variable impact parameter

Single Parton Scattering hard scattering of 2 partons at 1 point in overlapping disks

Double Parton Scattering hard scattering of partons at 2 separate points

Double Parton Scattering is expected to produce events with higher multiplicities than Single Parton Scattering

- requires production of charm mesons $D^{*0}\bar{D}^0$ or $D^0\bar{D}^{*0}$ with small relative momentum
- requires creation of charm quark and antiquark $c \bar{c}$ with small relative momentum

Single Parton Scattering

$$\star gg \longrightarrow c\bar{c} + g \text{ order } \alpha_{s^3}$$

Double Parton Scattering

Production of T_{cc} +(3875)

- requires production of charm mesons D*+D0 (or D*0D+)
 with small relative momentum
- requires creation of two charm quarks c c
 with small relative momentum

Single Parton Scattering

*
$$gg \longrightarrow cc + \bar{c} + \bar{c}$$
 order α_s^4

suppressed compared to X(3872)

Double Parton Scattering

$$\star gg \longrightarrow c + \bar{c} \text{ order } \alpha_{s^2}$$

$$\star gg \longrightarrow c + \bar{c}$$

comparable to X(3872)

Multiplicity Dependence

number of tracks in LHCb vertex detector N_{tracks}
 strongly correlated with hadron multiplicity dN/dy

LHCb: arXiv:2109.01056

- *T_{cc}*+(3872) dominated by DPS ??
- T_{cc}+(3872) at small N_{tracks} dominated by SPS ???

Single Parton Scattering

if $D^*\bar{D}^*$ are created at a point they can rescatter into $X+\pi$ (or $X+\gamma$) through a triangle diagram

Triangle Singularity

when 3 lines forming triangle can all be exactly on shell reaction rate has $\log^2 |E-E_{\Delta}|$ divergence

at energy E_{\triangle} determined by masses

when 3 lines forming triangle can all be almost on shell

reaction rate has narrow peak at energy E_{Δ}

prompt production in pp collisions BHI (2019)

narrow peak in $X\pi^{\pm}$ invariant mass 6.1 MeV above $X\pi^{\pm}$ threshold with width about 1 MeV

Production of T_{cc} +(3875)

Single Parton Scattering

⇒ charm mesons created at a point

if $D^{*+}D^{*+}$ are created at a point they can rescatter into $T_{cc}^{+} + \pi^{+}$ through a triangle diagram

Triangle Singularity

when 3 lines forming triangle can all be <u>almost</u> on shell reaction rate has narrow peak at energy E_{Δ} determined by masses

prompt production in pp collisions

BHIJ (in preparation)

narrow peak in $T_{cc}^+\pi^+$ invariant mass 6.1 MeV above $T_{cc}^+\pi^+$ threshold with width about 1 MeV observable at low multiplicity ??

other peaks from Triangle Singularities

```
\begin{array}{ll} \underline{e^+e^-\ annihilation} & \text{Dubinskiy \& Voloshin (2006)} \\ e^+e^- \to X + \gamma & \text{BHI (2019)} \\ \text{narrow peak near 4016 MeV with width about 2 MeV} \\ e^+e^- \to \pi_+(X\gamma) & \text{Guo (2019), Sakai, Jing \& Guo (2020)} \\ e^+e^- \to D^{*0}\bar{D}^0 + \gamma & \text{BHIJ (2020)} \\ & \text{interference effect from triangle singularity} \end{array}
```


B meson decay

 $B \to K + (X\pi)$ BHI (2019), Sakai, Oset & Guo (2020) narrow peak in $X\pi$ invariant mass

 $X\pi^+$: 6.1 MeV above $X\pi^+$ threshold with width about 1 MeV $X\pi^0$: 7.3 MeV above $X\pi^0$ threshold with width about 1 MeV

production of $X\pi^{\pm}$ in $p\bar{p}$ collisions at the Tevatron

DØ arxiv:2007.13420

Triangle Singularity produces narrow peak in $X\pi^{\pm}$ invariant mass 6.1 MeV above $X\pi^{\pm}$ threshold with width about 1 MeV

prompt production of $X\pi^{\pm}$:

DØ: "no evidence for soft-pion effect"

dependence on multiplicity in pp collisions LHCb 2020 measured prompt fractions for X and for ψ ' X-to- ψ ' ratios for prompt and for b-decay as functions of number of tracks in vertex detector

prompt fraction for ψ ': seems to saturate at large N_{tracks} X-to- ψ ' ratio for prompt: significant decrease with N_{tracks}

dependence on multiplicity in pp collisions

Comover Interaction Model
Esposito et al. arXiv:2006.15044

- only information about tetraquark is its size
- incorrect few-body physics for molecule:
 breakup cross section ≈ cross section for scattering from charm meson

Simple analysis of LHCb data on multiplicity dependence BHIJ arXiv:2012.13499

<u>Assumptions</u>

- $S = \exp\left(-\frac{\langle v\sigma\rangle(dN/dy)}{\sigma_{pp}}\log\frac{dN/dy}{N_{pp}}\right)$ prompt cross section is sum of term with survival probability of comover interaction model term with survival probability = 1 (constant)
- b decay cross section is constant

17

7 fitting parameters 26 data points $\chi^2/dof = 0.99$

fitted breakup reaction rates:

$$\langle v\sigma \rangle_{\psi'} = 3.9 \pm 0.8 \text{ mb}$$

 $\langle v\sigma \rangle_X = 2.7 \pm 0.7 \text{ mb}$

Summary

production of low-mass double charm: D^0D^0 increases with multiplicity

dominated by Double Parton Scattering

 \implies production of $T_{cc}^+(3875)$ dominated by DPS

production of low-mass charm+anticharm: $D^0 \bar{D}^0$ does not depend on multiplicity

dominated by Single Parton Scattering

 \implies production of X(3872) dominated by SPS

 \implies triangle singularity in production of X π[±] narrow peak in X π[±] invariant mass 6.1 MeV above threshold smoking gun for loosely bound molecule.

