SR Heat Load on FCC-ee Cold SSS A DEEPER LOOK

Nikolaos Nikolopoulos

CERN EP – CMG

144th FCC-ee Optics Design Meeting & 15th FCCIS WP2.2 Meeting

Supervisor: Michael Koratzinos EP – CMG

16 September 2021

Table of Contents

Introduction

- Aim of the Presentation
- The CAD Model
- Processing Solid Models
- 2 Geometry Processing, Simulations & Analysis
 - Defining Some Useful Operations
 - Occurring Problems
 - Cases Studied & Simulation Results
- Conclusion & Bibliography
 - Comments
 - Sources

Aim of the Presentation The CAD Model Processing Solid Models

Aim of the Presentation

- A question of "*how much heat will creep into the SSS cryostat from the photon stopper upstream?*" was tackled on the 141st FCC-ee Optics Design Meeting by Michael Koratzinos.
- One of the issues raised was the need to verify the presented results using the exact CAD-defined model layout.
- This approach accommodates importing models designed using CAD software into FLUKA and performing simulations through FLUKA's Graphical User Interface called flair.
- A specific workflow was followed making good use of DAGMC (Direct Accelerated Geometry Monte Carlo) tools developed by the University of Wisconsin-Madison.
- The results are preliminary.

Aim of the Presentation The CAD Model Processing Solid Models

CAD Models in MC Simulations

The problem of CAD geometry support in Monte Carlo codes can be broken down in two branches of solution, of which the second approach can be further broken down in two methods.

- Translation approach (including SuperMC and Geomit).
 - Attempts to decompose the geometry into primitive Combinatorial Solid Geometry (CSG) objects.
 - Issues emerge when the geometry contains spline surfaces which have no analytic representation.
- Oirect use of CAD (including DAGMC and OiNC).
 - High order root finding.
 - Determines the intersection of rays with CAD geometry.
 - High computation time.

- High resolution tessellated representation of the CAD surfaces.
 - DAGMC geometry is composed entirely of triangular facets.
 - High memory usage.

Aim of the Presentation The CAD Model Processing Solid Models

Inspection of the CAD Model

Aim of the Presentation The CAD Model Processing Solid Models

Materials Assigned per Region

Introduction

Geometry Processing, Simulations & Analysis Conclusion & Bibliography Aim of the Presentation The CAD Model Processing Solid Models

A Closer Look in the Geometry

Internal tetrahedral meshes for DEWAR and CRYOSTAT

Front face of CRYOSTAT with exposed DEWAR

XY projection view of **absorbers**, together they shield the entire **beampipe SSS** within the CRYO-STAT region along with an isometric view of the **beampipe**, the **stopper** and the **taper** outside of the CRYO-STAT region.

Aim of the Presentation The CAD Model Processing Solid Models

A Closer Look in the Geometry

Model Cut View with Materials

Model Cut View with Materials

Aim of the Presentation The CAD Model Processing Solid Models

Beam Pipe Geometry & Stopper Modifications

Modifications wrt the CDR stopper [1].

- Stopper is thicker.
- Stopper is longer.
- Cooling pipe addition.
- Stopper photon incident slope = $\tan^{-1}(\frac{1}{30})$.

Introduction

Geometry Processing, Simulations & Analysis Conclusion & Bibliography Aim of the Presentation The CAD Model Processing Solid Models

Cubit Software Package

Using Cubit to Produce DAGMC Solid Models

DAGMC model preparation (left) and solid model processing (right) wokrflows (references: [3, 6])

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Operations Performed with Cubit

Imprinting & Merging

Imprinting

Imprinting creates a common surface interface between touching volumes.

Merging

Merging then takes the touching surfaces and makes them into one surface.

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Operations Performed with Cubit

Faceting

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Imperfections Emerging after Processing the Model Discrepancies Due to Flawed Meshing

Distinct boundaries between the CRYOSTAT and the DEWAR must be set, in order to avoid flawed meshing which can lead to discontinuities and disruptions in the exported geometry file used by the **FluDAG** executable, in order to run particle simulations with **FLUKA**.

Misleading results can arise from running simulations with improper tolerance parameter values or if neighbouring faces don't share facet points with the edge they have in common nor with each other. The simulation will run smoothly, but the scoring results and in general the output files will be misleading and untrustworthy.

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Fixing the Problem

- Make sure that no shared boundaries between neighbouring volumes of different materials exist. In other words, solids must be manifold (they should be able to hold water inside of them).
- Eliminate excessive details in the form of sheet bodies or standalone surfaces not part of any volume, prior to meshing with **Cubit**
- Due to the fact that there is no unit system defined in **Cubit**, models should be scaled appropriately (lengths should take values within the interval [1E-3, 1E+7]).
- Special care is required while adjusting Cubit's tolerance values not to be higher than the smallest length in the model's geometry.

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Different Material Inspection

Scoring Energy Deposition per Region

The energy deposition is scored per region (see slides: 5 & 6 for a visualised region recap) in a number of cases summarised below.

	п	Namo	CASES					
		, Name		11		IV	V	
	1	DEWAR			BLCKHOLE			
	2	CRYOSTAT	VACUUM		IR	ON		
	3	BP_SSS_3M		COPPER				
	4	ABSORBER_BP	VACUUM		TUNGSTEN	VACUUM	TUNGSTEN	
Regions	5	ABSORBER_FRONT	VACUUM		TUNGSTEN			
	6	BP_TAPER	COPPER					
	7	BP_32mm			COPPER			
	8	STOPPER			TUNGSTEN			
	9	GRAVEYARD [†]	BLCKHOLE					
	10	SECOND_STOPPER			BLCKHOLE			
	11	VOID			VACUUM			

BLCKHOLE is assigned as a material to the DEWAR and SECOND_STOPPER regions for scoring the **deposited energy** therein.

 $\texttt{GRAVEYARD}^{\dagger}: \texttt{External area, with an infinite absorption cross section, all particles vanish when they enter.}$

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Running Simulations

Tracing the trajectories of all the particles on the entire model (image on the left) as well as when they hit the stopper (image on the right) projected on the ZX plane.

Some of the SR escapes the stopper, to be captured by the next stopper. FLUKA gives the average energy absorbed in every region per incident photon. An energy deposition analysis per region will follow for each case listed previously.

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

FLUKA Results

At 182.5 GeV average beam kinetic energy (top threshold):

- the critical energy is 1.25 MeV,
- \bullet average photon energy $\sim 0.4 \textit{MeV}$,
- SR hits the stopper $\sim 27m$ downstream.

Total energy histogram (source: [7])

Introduction Defining Some Useful Operations Geometry Processing, Simulations & Analysis Conclusion & Bibliography Cases Studied & Simulation Results

Case | Energy Deposition per Region

CASE I (200000 primaries)				
Region #	ID	Name	Material	ENERGY Density GeV/cm**3/one beam particle
1	1	DEWAR	BLCKHOLE	3.36E-06
2	2	CRYOSTAT	VACUUM	0.00E+00
3	3	BP_SSS_3M	COPPER	1.81E-07
4	4	ABSORBER_BP	VACUUM	0.00E+00
5	5	ABSORBER_FRONT	VACUUM	0.00E+00
6	6	BP_TAPER	COPPER	2.75E-08
7	7	BP_32mm	COPPER	3.25E-05
8	8	STOPPER	TUNGSTEN	3.28E-04
9	9	GRAVEYARD	BLCKHOLE	4.55E-05
10	10	SECOND_STOPPER	BLCKHOLE	1.30E-07
11	11	VOID	VACUUM	0.00E+00
Total (integrated over volume):				4.10E-04

Total_SR_Energy	4.10E-04
Total_Incident_SR_Energy	4.10E-04
% of the Total_Incident_SR_Energy absorbed by the DEWAR	0.82%
% of the Total_Incident_SR_Energy absorbed by the CRYOSTAT	0.00%
% of the Total_Incident_SR_Energy absorbed by the BP_SSS_3M	0.04%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_BP	0.00%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_FRONT	0.00%
% of the Total_Incident_SR_Energy absorbed by the BP_TAPER	0.01%
% of the Total_Incident_SR_Energy absorbed by the BP_32mm	7.95%
% of the Total_Incident_SR_Energy absorbed by the STOPPER	80.07%
% of the Total_Incident_SR_Energy absorbed by the GRAVEYARD	11.12%
% of the Total_Incident_SR_Energy absorbed by the SECOND_STOPPER	0.03%

The formula used for calculating **total incident SR energy** percentages deposited in each region can be parametrized as follows.

$$RelativeEnergyX := rac{EnergyX}{TotalEnergy - EscapingEnergy} \%,$$

where $X \in \{\text{DEWAR}, \ldots, \text{SECOND}_\text{STOPPER}\}$

and *EscapingEnergy* = the amount of energy absorbed by the SECOND_STOPPER.

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Case II Energy Deposition per Region

CASE 2 (200000 primaries)					
Region #	ID	Name	Material	ENERGY Density GeV/cm**3/one beam particle	
1	1	DEWAR	BLCKHOLE	1.18E-06	
2	2	CRYOSTAT	IRON	2.18E-06	
3	3	BP_SSS_3M	COPPER	1.96E-07	
4	4	ABSORBER_BP	VACUUM	0.00E+00	
5	5	ABSORBER_FRONT	VACUUM	0.00E+00	
6	6	BP_TAPER	COPPER	3.65E-08	
7	7	BP_32mm	COPPER	3.26E-05	
8	8	STOPPER	TUNGSTEN	3.28E-04	
9	9	GRAVEYARD	BLCKHOLE	4.58E-05	
10	10	SECOND_STOPPER	BLCKHOLE	1.12E-07	
11	11	VOID	VACUUM	0.00E+00	
Total (integrated over volume):			ne):	4.10E-04	

Total_SR_Energy	4.10E-04
Total_Incident_SR_Energy	4.10E-04
% of the Total_Incident_SR_Energy absorbed by the DEWAR	0.29%
% of the Total_Incident_SR_Energy absorbed by the CRYOSTAT	0.53%
% of the Total_Incident_SR_Energy absorbed by the BP_SSS_3M	0.05%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_BP	0.00%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_FRONT	0.00%
% of the Total_Incident_SR_Energy absorbed by the BP_TAPER	0.01%
% of the Total_Incident_SR_Energy absorbed by the BP_32mm	7.96%
% of the Total_Incident_SR_Energy absorbed by the STOPPER	79.99%
% of the Total_Incident_SR_Energy absorbed by the GRAVEYARD	11.17%
% of the Total_Incident_SR_Energy absorbed by the SECOND_STOPPER	0.03%

- The energy deposition on the DEWAR has decreased significantly when IRON is assigned as a material to the CRYOSTAT (i.e. transitioning from CASE I → CASE II).
- The same trend appears as we advance towards **CASE V**, which is a more **realistic scenario** in terms of material assignment.

Introduction Defining Some Useful Operations Geometry Processing, Simulations & Analysis Conclusion & Bibliography Cases Studied & Simulation Results

Case III Energy Deposition per Region

The energy deposition on the DEWAR is decreasing, but the DEWAR is still receiving a large amount of energy, i.e. $974 \ eV$ per incident photon.

	CASE 3 (200000 primaries)					
Region #	ID	Name	Material	ENERGY Density GeV/cm**3/one beam particle		
1	1	DEWAR	BLCKHOLE	9.74E-07		
2	2	CRYOSTAT	IRON	2.17E-06		
3	3	BP_SSS_3M	COPPER	2.10E-07		
4	4	ABSORBER_BP	TUNGSTEN	2.59E-07		
5	5	ABSORBER_FRONT	VACUUM	0.00E+00		
6	6	BP_TAPER	COPPER	3.78E-08		
7	7	BP_32mm	COPPER	3.25E-05		
8	8	STOPPER	TUNGSTEN	3.27E-04		
9	9	GRAVEYARD	BLCKHOLE	4.57E-05		
10	10	SECOND_STOPPER	BLCKHOLE	1.09E-07		
11	11	VOID	VACUUM	0.00E+00		
	Tota	l (integrated over volu	ne):	4.09E-04		

Total_Incident_SR_Energy	4.09E-04
% of the Total_Incident_SR_Energy absorbed by the DEWAR	0.24%
% of the Total_Incident_SR_Energy absorbed by the CRYOSTAT	0.53%
% of the Total_Incident_SR_Energy absorbed by the BP_SSS_3M	0.05%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_BP	0.06%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_FRONT	0.00%
% of the Total_Incident_SR_Energy absorbed by the BP_TAPER	0.01%
% of the Total_Incident_SR_Energy absorbed by the BP_32mm	7.94%
% of the Total_Incident_SR_Energy absorbed by the STOPPER	79.99%
% of the Total_Incident_SR_Energy absorbed by the GRAVEYARD	11.17%
% of the Total_Incident_SR_Energy absorbed by the SECOND_STOPPER	0.03%

Defining Some Useful Operations Occurring Problems Cases Studied & Simulation Results

Case IV Energy Deposition per Region

CASE 4 (200000 primaries)					
Region #	ID	Name	Material	ENERGY Density GeV/cm**3/one beam particle	
1	1	DEWAR	BLCKHOLE	2.14E-07	
2	2	CRYOSTAT	IRON	4.02E-08	
3	3	BP_SSS_3M	COPPER	2.15E-07	
4	4	ABSORBER_BP	VACUUM	0.00E+00	
5	5	ABSORBER_FRONT	TUNGSTEN	5.38E-06	
6	6	BP_TAPER	COPPER	4.28E-08	
7	7	BP_32mm	COPPER	3.23E-05	
8	8	STOPPER	TUNGSTEN	3.26E-04	
9	9	GRAVEYARD	BLCKHOLE	4.29E-05	
10	10	SECOND_STOPPER	BLCKHOLE	1.09E-07	
11	11	VOID	VACUUM	0.00E+00	
Total (integrated over volume):			ne):	4.07E-04	

Total_SR_Energy	4.07E-04
Total_Incident_SR_Energy	4.07E-04
% of the Total_Incident_SR_Energy absorbed by the DEWAR	0.05%
% of the Total_Incident_SR_Energy absorbed by the CRYOSTAT	0.01%
% of the Total_Incident_SR_Energy absorbed by the BP_SSS_3M	0.05%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_BP	0.00%
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_FRONT	1.32%
% of the Total_Incident_SR_Energy absorbed by the BP_TAPER	0.01%
% of the Total_Incident_SR_Energy absorbed by the BP_32mm	7.94%
% of the Total_Incident_SR_Energy absorbed by the STOPPER	80.07%
% of the Total_Incident_SR_Energy absorbed by the GRAVEYARD	10.54%
% of the Total_Incident_SR_Energy absorbed by the SECOND_STOPPER	0.03%

Assigning only the material of $ABSORBER_BP$ to VACUUM and having the rest of the regions with their corresponding materials yields, that 0.5% of the **incident** SR energy reaches the DEWAR, which is comparable to the results obtained by M. Koratzinos (0.3% of the **incident SR energy** was estimated to reach the DEWAR). Introduction Defining Some Useful Operations Geometry Processing, Simulations & Analysis Conclusion & Bibliography Cases Studied & Simulation Results

Case V Energy Deposition per Region

Shielding the DEWAR to the full extent yields a remarkable 0.1% of the **incident SR energy** reaching the DEWAR, that is 41.3 *eV* per incident photon, according to the simulations.

	CASE 5 (200000 primaries)					
Region #	ID	Name	Material	ENERGY Density GeV/cm**3/one beam particle		
1	1	DEWAR	BLCKHOLE	4.13E-08		
2	2	CRYOSTAT	IRON	9.18E-09		
3	3	BP_SSS_3M	COPPER	2.23E-07		
4	4	ABSORBER_BP	TUNGSTEN	2.07E-07		
5	5	ABSORBER_FRONT	TUNGSTEN	5.39E-06		
6	6	BP_TAPER	COPPER	4.24E-08		
7	7	BP_32mm	COPPER	3.22E-05		
8	8	STOPPER	TUNGSTEN	3.26E-04		
9	9	GRAVEYARD	BLCKHOLE	4.29E-05		
10	10	SECOND_STOPPER	BLCKHOLE	1.13E-07		
11	11	VOID	VACUUM	0.00E+00		
	Tota	l (integrated over volur	ne):	4.07E-04		

Total_SR_Energy	4.07E-04	
Total_Incident_SR_Energy		
% of Total_Incident_SR_Energy absorbed by the DEWAR	0.01%	
% of the Total_Incident_SR_Energy absorbed by the CRYOSTAT	0.00%	
% of the Total_Incident_SR_Energy absorbed by the BP_SSS_3M	0.05%	
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_BP	0.05%	
% of the Total_Incident_SR_Energy absorbed by the ABSORBER_FRONT	1.32%	
% of the Total_Incident_SR_Energy absorbed by the BP_TAPER	0.01%	
% of the Total_Incident_SR_Energy absorbed by the BP_32mm	7.91%	
% of the Total_Incident_SR_Energy absorbed by the STOPPER	80.11%	
% of the Total_Incident_SR_Energy absorbed by the GRAVEYARD	10.53%	
% of the Total_Incident_SR_Energy absorbed by the SECOND_STOPPER	0.03%	

Comments Sources

Remarks

- Results presented on the 141st FCC-ee Optics Design Meeting by Michael Koratzinos, have been verified by performing simulations using the **exact layout** as it was exported by Inventor 2020, bypassing completely **FLUKA's** boolean geometry definition.
- A variety of cases has been simulated with **FLUKA** and the arrangement examined on the final case is remarkably efficient, enabling < 1W of heat load to get deposited to the DEWAR.
- The precise heat load calculation, taking into account the **total radiation power per arc length** (in accordance with **table 2.2** of the CDR [1]), is given by the expression:

 $\textit{HeatLoad}_{\textit{DEWAR}}$: = $\textit{RelativeEnergy}_{\textit{DEWAR}} \times \textit{PowerArcLength} \times \textit{LengthSSS}$

$$= 0.0001 \times 1.2 \frac{\text{kW}}{\text{m}} \times 4.6 \text{ m}$$

$$\approx 0.55 \text{ W}.$$

Comments Sources

Bibliography I

- Benedikt, Michael and Blondel, Alain et al.
 FCC-ee: The Lepton Collider: FCC CDR Volume 2.
 The European Physical Journal Special Topics.
 10.1140/epjst/e2019-900045-4, 2018.
- Blacker, Teddy Dean and Owen, Steven J. et al. CUBIT geometry and mesh generation toolkit 15.1 user documentation. https://www.osti.gov/biblio/1430472, 2016.

Davis, Andrew and Vlachoudis, Vasillis et al. FluDAG: A CAD based tool for high energy physics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. https://www.sciencedirect.com/science/ article/pii/S0168900218314311, 2019.

Bibliography II

- Ferrari, A and Sala, Paola R and Fassò, A and Ranft, J. FLUKA: A multi-particle transport code (program ve 2005). https://cds.cern.ch/record/898301, 2005.
- Smith, Brandon M. and Tautges, Timothy J. et al. Sealing Faceted Surfaces to Achieve Watertight CAD Models. Springer Berlin Heidelberg. https://link.springer.com/ chapter/10.1007/978-3-642-15414-0_11, 2010.

http://svalinn.github.io/DAGMC/index.html

https://indico.cern.ch/event/1044369

https://indico.cern.ch/event/995850/timetable

