

A Minimal Explanation of Flavour Anomalies:

$R_{D^{(*)}}, R_{K^{(*)}}, (g-2)_{\mu}$ and CAA

Sokratis Trifinopoulos

Corfu

02 September 2021

[D. Marzocca, ST] 2104.05730

B-Physics Anomalies: neutral-current

> $b \rightarrow s\ell\ell$: Deficit of the charged-current transition in μ vs. e

B-Physics Anomalies: neutral-current

- ► R_K survived the latest update by the LHCb even after employing the full dataset of Run I and II <u>independently</u> at $3.1\sigma!$ [LHCb] 2103.11769
- Fits obtained by varying one or two relevant NP WCs at a time yield pulls at a staggering 5σ level! [Altmannshofer et al] 2103.13370
 A recent analysis evaluated the global significant using a conservative & unbiased method and found a global 3.9σ (still remarkable!)

[Lancierini et al] 2104.05631

The anomalies implies violation of Lepton Flavor Universality (LFUV), which is an accidental symmetry of the SM.

(if confirmed) definite NP signal of short-distance origin

B-Physics Anomalies: charged-current

THE (MAYBE NOT SO) GOOD

 $\stackrel{\flat}{\rightarrow} \underbrace{c\tau v}_{:} \text{ Enhancement of the charged-current transition in } \tau \text{ vs. } \ell \\ R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \overline{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \overline{\nu})} \approx 3\sigma$

- The results from BaBar (2012) drive mainly the CL (without it the pull is 2.2σ)
- ➢ R_D agrees with the SM in the latest Belle update, but it has never been measured by LHCb → in anticipation of an analysis?!

Anomalous magnetic moment of the muon

- $(g-2)_{\mu}$: Deviation in the muon anomalous magnetic moment
- → The longstanding BNL result was recently updated by FNAL, confirming the previous trend and increasing the significance to 4.2σ !!! [Fermilab] 2104.03281
- BUT, recent lattice calculations yield SM prediction (almost) in agreement with experiment.

The Cabbibo-Angle Anomaly

 \succ CAA: Discrepancies between different determinations of V_{us} :

> Depending on the input from nuclear β decays we obtain 3-5 σ !

[Grossman et al] 1911.07821

Excursion: nuclear β decays

Superallowed β decays are Fermi transitions (S=0, ΔJ =0) between isobaric analogue states with no parity change ($\Delta \pi$ =0).

2004 + 100(0)

> Masterformula:
$$|V_{ud}|^2$$

The uncertainty of Δ_R is dominated by the hadronic contribution to the $W\gamma$ box. New analyses using dispersion relations and hybrid lattice QCD result in a shift of $|V_{ud}|$.

[Seng et al] 1812.03352, 2107.14708

[Czarnecki et al] 1907.06737

Following the trails...

- Tree-level process
- Mild CKM suppression

(presumably) tree-level NP effect induced by semi-leptonic 4-fermion opeators C Leptoquarks!

- Loop-level process
- CKM & GIM suppression

NP in (short-distance) WC of: $O_{9}^{\mu} = \overline{b}_{L} \gamma^{\mu} s_{L} \overline{\mu} \gamma_{\mu} \mu$ $O_{10}^{\mu} = \overline{b}_{L} \gamma^{\mu} s_{L} \overline{\mu} \gamma_{\mu} \gamma_{5} \mu$

BONUS: $(g-2)_{\mu}$ with LQ chiral enhanced loops

Following the trails...

➤ The tension between V_{us}^{CKM} and V_{us}^{β} can be alleviated by introducing a constructive interference in $\mu \rightarrow evv$. In particular, one obtains:

$$V_{us}^{\beta} \equiv \sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2} \simeq V_{us}^{\text{CKM}} \left[1 + \left(\frac{V_{ud}^{\text{CKM}}}{V_{us}^{\text{CKM}}}\right)^2 \delta(\mu \to e\nu\nu) \right]$$

where $\delta(\ell \to \ell' \nu \nu) \equiv \mathcal{A}(\ell \to \ell' \nu \nu)_{\rm NP} / \mathcal{A}(\ell \to \ell' \nu \nu)_{\rm SM}$. [Crivellin et al] 2012.09845

► Link between CAA and the *B*-Physics anomalies:

$$\frac{g_{\tau}}{g_e} = \left| \frac{1 + \delta(\tau \to \mu \nu \nu)}{1 + \delta(\mu \to e \nu \nu)} \right| \approx 2\sigma$$
[Feruglio et al] 1606.00524

Interplay with LQ anticipated already by the EFT analysis

The Model

- > NP particle content: $S_1 \sim (\bar{\mathbf{3}}, \mathbf{1})_{1/3}$, $\phi^+ \sim (\mathbf{1}, \mathbf{1})_1$.
- > The SM Lagrangian is augmented by the following <u>Yukawa-type</u> terms $\mathcal{L}_{S1+\phi} = \frac{1}{2} \lambda_{\alpha\beta} \bar{\ell}^c_{\alpha} \epsilon \ell_{\beta} \phi^+ + \lambda^{1L}_{i\alpha} \bar{q}^c_i \epsilon \ell_{\alpha} S_1 + \lambda^{1R}_{i\alpha} \bar{u}^c_i e_{\alpha} S_1 + \text{h.c.}$

> We employ the following couplings:

Solution to the Anomalies (diagrams)

Solution to the Anomalies (diagrams)

Model parameter space (at 2σ exclusion)

> We perform a χ^2 minimization with fixed masses, $M_1 = M_{\phi} = 5.5$ TeV.

Solution to the Anomalies (fit)

$$\chi^2_{\rm SM} - \chi^2_{\rm best-fit} = 82$$

Future Prospects I

- > The preferred region is close to B_s -mixing and $B \rightarrow K^{(*)}\nu\nu$ present bounds due to S_I contributions.
- ➤ Unique signatures: $B \to K\mu e$ and $B_s \to \mu e$ (similar box that fixes $C_9 \& C_{10}$)
- ▶ No effects to $b \rightarrow s\tau\tau$.

Future Prospects II

- LFU ratios in τ decays (φ⁺ at tree-level + S₁ at one-loop) : ^g_τ/_{g_e} g_{τ/g_μ} and g_{μ/g_e}.

 LFV τ decays: τ → μγ, τ → 3μ and τ → μee (via S₁ at one-loop) τ → eγ, τ → 3e and τ → eμμ (via φ⁺ at one-loop)
- Masses too large for direct searches at LHC (maybe effects in high-energy tails of Drell-Yan). Ideal machines: FCC-hh for S_1 and a muon collider for φ^+ .

Model-independent Prospects

- Final verdict on *B*-Physics anomalies: Belle-II with $\sim 20ab^{-1}$
- $(g-2)_{\mu}$ runs 2&3 already completed \rightarrow statistical error will soon shrink further!
- CAA: (*theory*) advance understanding of the EW radiative corrections

(*exeriment*) improvement on $K \rightarrow \pi \ell v$ (LHCb, NA62, TREK etc.) & $K \rightarrow \mu v / K \rightarrow ev$ (J-PARC E36)

Additionally, complementary observables can become competitive e.g. pion β decays $\pi^{\pm} \rightarrow \pi^{0} e^{\pm} v_{e}$, neutron lifetime etc.

Conclusions

- Model-building invitation: Good reasons to consider all four major (>3σ) deviations from the SM in Flavour physics under the <u>same NP</u> (LFUV) framework.
- In this work we provide the first combined solution, respecting the rich set of phenomenological constraints.
- The particle content of the model (S₁ + φ⁺) is (most probably) the most minimal one that can achieve this.
 Additionally, it features both LQ and purely leptonic interactions (=fresh new *market* direction vs the LQ *monopolies*).
- Many new and old interesting signatures (or model killers..)

Thank you!!!!

QUESTIONS ???

@largememecollider

Backup slides

Constraints:

Observable	Experimental value
R_D	0.34 ± 0.029 [56]
R_{D^*}	0.295 ± 0.013 [56]
ΔC_9^{μ}	-0.675 ± 0.16 [20]
ΔC_{10}^{μ}	0.244 ± 0.13 [20]
Δa_{μ}	$(2.51 \pm 0.59) \times 10^{-9} [27, 28]$
$\delta(\mu\to e\nu\nu)$	$(6.5 \pm 1.5) \times 10^{-4} \ [41]$
$R_D^{\mu/e}$	0.978 ± 0.035 [57, 58]
$\mathcal{B}(B_c \to \tau \nu)$	< 0.1 [59]
$R_{K^{(*)}}^{\nu}$	< 2.7 [60]
$C^1_{B_s}$	$< 2.01 \times 10^{-5} \text{ TeV}^{-2}$ [61]
$ \operatorname{Re}(C_D^1) $	$< 3.57 \times 10^{-7} \text{ TeV}^{-2}$ [61]
$ \operatorname{Im}(C_D^1) $	$< 2.23 \times 10^{-8} \text{ TeV}^{-2}$ [61]
$\frac{g_{\tau}}{g_e}$	1.0058 ± 0.0030 [56]
$\frac{g_{\tau}}{g_{\mu}}$	1.0022 ± 0.0030 [56]
$\frac{g_{\mu}}{q_{e}}$	1.0036 ± 0.0028 [56]
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61) \times 10^{-3}$ [62]
$\delta g^Z_{ au_R}$	$(0.66 \pm 0.65) \times 10^{-3}$ [62]
$\delta g^Z_{\mu L}$	$(0.3 \pm 1.1) \times 10^{-3} \ [62]$
$\delta g^Z_{\mu R}$	$(0.2 \pm 1.3) \times 10^{-3} \ [62]$
$\mathcal{B}(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}$ [63]
$\mathcal{B}(\tau \to 3\mu)$	$< 2.1 \times 10^{-8}$ [63]

Best-fit point:

$$\begin{array}{l} \lambda_{e\mu} = 1.35 , \quad \lambda_{\mu\tau} = 3.17 , \\ \lambda_{b\tau}^{1L} = 1.46 , \quad \lambda_{s\tau}^{1L} = -0.54 , \quad \lambda_{b\mu}^{1L} = 2.07 , \\ \lambda_{c\tau}^{1R} = -3.28 , \quad \lambda_{t\mu}^{1R} = 0.01 , \quad \lambda_{c\mu}^{1R} = 2.35 , \end{array}$$

(Wild) speculations

- The LQ S_1 and φ^+ share the quantum numbers of the right-handed sbottom and stau, respectively.
- ➤ The NP couplings λ and λ^{1L} would correspond then to the couplings λ and λ' of the RPV superpotential. The right-handed couplings λ^{1R} can only generated from non-holomorphic RPV terms. [Trifinopoulos] 1904.12940
- → Hint towards a RPV scenario with lighter 3rd generation superpartners?
- > λ and λ^{1L} follow the U(2) flavour symmetry that respects SU(5) unification. λ^{1R} is more peculiar, but since it originates from a hidden sector maybe there is a flavourful dynamical way to reproduce the observed structure. [Csaki et al] 1309.5957