Earth as a baseline for measuring CP violating phase in neutrino oscillations in matter

Michał Ryczkowski
University of Warsaw
Faculty of Physics
Corfu Summer Institute 2021

Based on 2005.07719 (A. Ioannisian, S. Pokorski, J. Rosiek, M. Ryczkowski)

September 2, 2021

Neutrino oscillations in vacuum

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\underbrace{\left|\left\langle\nu_{\beta} \mid \nu_{L \alpha}(x, t)\right\rangle\right|^{2}}_{\left|S_{\beta \alpha}\right|^{2}}=\left|U^{*} e^{-i \mathcal{H}^{d} x} U\right|^{2}
$$

Neutrino oscillations in vacuum

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\underbrace{\left|\left\langle\nu_{\beta} \mid \nu_{L \alpha}(x, t)\right\rangle\right|^{2}}_{\left|S_{\beta \alpha}\right|^{2}}=\left|U^{*} e^{-i \mathcal{H}^{d} x} U\right|^{2}
$$

PMNS (Pontecorvo-Maki-Nakagawa-Sakata) lepton mixing matrix \& vacuum Hamiltonian:

$$
\begin{gathered}
U=O_{23} U_{\delta} O_{13} O_{12}, \quad \mathcal{H}=U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{\Delta m_{\odot}^{2}}{2 E} & 0 \\
0 & 0 & \frac{\Delta m_{a}^{2}}{2 E}
\end{array}\right) U^{\dagger}=U \mathcal{H}^{d} U^{\dagger} \\
O_{12}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \quad o_{13}=\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{array}\right) \quad o_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \quad U_{\delta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i \delta}
\end{array}\right)
\end{gathered}
$$

Neutrino oscillations in vacuum

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\underbrace{\left|\left\langle\nu_{\beta} \mid \nu_{L \alpha}(x, t)\right\rangle\right|^{2}}_{\left|S_{\beta \alpha}\right|^{2}}=\left|U^{*} e^{-i \mathcal{H}^{d} x} U\right|^{2}
$$

PMNS (Pontecorvo-Maki-Nakagawa-Sakata) lepton mixing matrix \& vacuum Hamiltonian:

$$
\begin{gathered}
U=O_{23} U_{\delta} O_{13} O_{12}, \quad \mathcal{H}=U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{\Delta m_{\odot}^{2}}{2 E} & 0 \\
0 & 0 & \frac{\Delta m_{a}^{2}}{2 E}
\end{array}\right) U^{\dagger}=U \mathcal{H}^{d} U^{\dagger} \\
o_{12}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \quad o_{13}=\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} \\
0 & 1 & 0 \\
-s_{13} & 0 & c_{13}
\end{array}\right) \quad o_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right) \quad u_{\delta}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{i \delta}
\end{array}\right)
\end{gathered}
$$

- $\Delta m_{\odot}^{2}=m_{2}^{2}-m_{1}^{2}, \Delta m_{a}^{2}=m_{3}^{2}-m_{1}^{2}$ (well constrained),
- $s \equiv \sin \theta, c \equiv \cos \theta, \theta_{12}, \theta_{13}, \theta_{23}$ - mixing angles (well constrained),
- $\delta-\mathbf{C P}$ violating phase (weakly constrained).

Neutrino oscillations in matter

Hamiltonian in matter, assuming constant matter density (following A. Ioannisian \& S. Pokorski 1801.10488):
$\mathcal{H}_{m}=U\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{\odot}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{a}^{2}}{2 E}\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}V & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=U_{m}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2 E}\end{array}\right) U_{m}^{\dagger} \equiv U_{m} \mathcal{H}_{m}^{d} U_{m}^{\dagger}$
with PMNS matrix in matter and interaction potential:

$$
U_{m}=O_{23}^{m} U_{\delta}^{m} O_{13}^{m} O_{12}^{m}, \quad V=\sqrt{2} G_{F} N_{e}
$$

Neutrino oscillations in matter

Hamiltonian in matter, assuming constant matter density (following A. Ioannisian \& S. Pokorski 1801.10488):
$\mathcal{H}_{m}=U\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{\odot}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{a}^{2}}{2 E}\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}V & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=U_{m}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2 E}\end{array}\right) U_{m}^{\dagger} \equiv U_{m} \mathcal{H}_{m}^{d} U_{m}^{\dagger}$
with PMNS matrix in matter and interaction potential:

$$
U_{m}=O_{23}^{m} U_{\delta}^{m} O_{13}^{m} O_{12}^{m}, \quad V=\sqrt{2} G_{F} N_{e}
$$

and effective parameters:

$$
\theta_{12} \rightarrow \theta_{12}^{m}, \quad \Delta m_{\odot}^{2} \rightarrow \Delta m_{21}^{2}, \quad \theta_{13} \rightarrow \theta_{13}^{m}, \quad \Delta m_{a}^{2} \rightarrow \Delta m_{31}^{2}, \quad \theta_{23}^{m} \equiv \theta_{23}, \quad \delta^{m} \equiv \delta
$$

Neutrino oscillations in matter

Hamiltonian in matter, assuming constant matter density (following A. Ioannisian \& S. Pokorski 1801.10488):
$\mathcal{H}_{m}=U\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{\odot}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{a}^{2}}{2 E}\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}V & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=U_{m}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^{2}}{2 E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^{2}}{2 E}\end{array}\right) U_{m}^{\dagger} \equiv U_{m} \mathcal{H}_{m}^{d} U_{m}^{\dagger}$
with PMNS matrix in matter and interaction potential:

$$
U_{m}=O_{23}^{m} U_{\delta}^{m} O_{13}^{m} O_{12}^{m}, \quad V=\sqrt{2} G_{F} N_{e}
$$

and effective parameters:

$$
\theta_{12} \rightarrow \theta_{12}^{m}, \quad \Delta m_{\odot}^{2} \rightarrow \Delta m_{21}^{2}, \quad \theta_{13} \rightarrow \theta_{13}^{m}, \quad \Delta m_{a}^{2} \rightarrow \Delta m_{31}^{2}, \quad \theta_{23}^{m} \equiv \theta_{23}, \quad \delta^{m} \equiv \delta
$$

$$
P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\underbrace{\left|\left\langle\nu_{\beta} \mid \nu_{L \alpha}(x, t)\right\rangle\right|^{2}}_{\left|S_{\beta \alpha}^{m}\right|^{2}}=\left|U_{m}^{*} e^{-i \mathcal{H}_{m}^{d} \times} U_{m}\right|^{2}
$$

CP symmetry and its violation

- SM sources of CP violation - weak interactions:
- CKM quark mixing matrix - phase δ^{q} - constrained,
- PMNS lepton mixing matrix - phase δ - weakly constrained,

CP symmetry and its violation

- SM sources of CP violation - weak interactions:
- CKM quark mixing matrix - phase δ^{q} - constrained,
- PMNS lepton mixing matrix - phase δ - weakly constrained,
- Significance of CP violation:
- matter-antimatter asymmetry,
- tests of SM and BSM physics,

CP symmetry and its violation

- SM sources of CP violation - weak interactions:
- CKM quark mixing matrix - phase δ^{q} - constrained,
- PMNS lepton mixing matrix - phase δ - weakly constrained,
- Significance of CP violation:
- matter-antimatter asymmetry,
- tests of SM and BSM physics,

Question: What is the value of δ ?

CP symmetry and its violation

- SM sources of CP violation - weak interactions:
- CKM quark mixing matrix - phase δ^{q} - constrained,
- PMNS lepton mixing matrix - phase δ - weakly constrained,
- Significance of CP violation:
- matter-antimatter asymmetry,
- tests of SM and BSM physics,

Question: What is the value of δ ?
Answer: Neutrino oscillations!

CP violation in neutrino oscillations

- Oscillations in vacuum:

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta
\end{gathered}
$$

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta \\
\delta \neq 0 \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \rightarrow \mathbf{C P} \text { violation }
\end{gathered}
$$

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta \\
\delta \neq 0 \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \rightarrow \mathbf{C P} \text { violation }
\end{gathered}
$$

- Oscillations in matter - more complicated (matter induced effects):

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta \\
\delta \neq 0 \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \rightarrow \mathbf{C P} \text { violation }
\end{gathered}
$$

- Oscillations in matter - more complicated (matter induced effects):

$$
C P: P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P^{m}\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta \\
\delta \neq 0 \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \rightarrow \mathbf{C P} \text { violation }
\end{gathered}
$$

- Oscillations in matter - more complicated (matter induced effects):

$$
C P: P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P^{m}\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

$$
C P \equiv \delta^{m} \rightarrow-\delta^{m} \text { and } V \rightarrow-V
$$

CP violation in neutrino oscillations

- Oscillations in vacuum:

$$
\begin{gathered}
C P: P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \\
C P \equiv \delta \rightarrow-\delta \\
\delta \neq 0 \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \neq P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) \rightarrow \mathbf{C P} \text { violation }
\end{gathered}
$$

- Oscillations in matter - more complicated (matter induced effects):

$$
C P: P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=P^{m}\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)
$$

$$
C P \equiv \delta^{m} \rightarrow-\delta^{m} \text { and } V \rightarrow-V
$$

$$
\delta^{m} \equiv \delta \rightarrow \text { measurement of } \delta^{m} \rightarrow \mathbf{C P} \text { violation }
$$

New approach to measure δ in neutrino oscillations

1. Matter can enhance (or weaken) δ effects,

New approach to measure δ in neutrino oscillations

1. Matter can enhance (or weaken) δ effects,
2. $P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \propto 1 / E$,

New approach to measure δ in neutrino oscillations

1. Matter can enhance (or weaken) δ effects,
2. $P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \propto 1 / E$,

Promising approach to measure δ :

New approach to measure δ in neutrino oscillations

1. Matter can enhance (or weaken) δ effects,
2. $P^{m}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \propto 1 / E$,

Promising approach to measure δ :

$$
\Downarrow
$$

Oscillations of sub-GeV atmospheric neutrinos traversing the Earth

2005.07719: "Analytical description of CP violation in oscillations of atmospheric neutrinos traversing the Earth"
A. Ioannisian, S. Pokorski, J. Rosiek, M. Ryczkowski

Atmospheric neutrinos traversing the Earth: setup

Atmospheric neutrinos traversing the Earth: setup

Atmospheric neutrinos traversing the Earth

Exact S-matrix for neutrinos traversing n Earth's layers (normal mass ordering):

$$
\begin{aligned}
& S^{m}=T \Pi_{i} U_{m i}^{*} e^{-i \mathcal{H}_{m i}^{d}} U_{m i}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger}
\end{aligned}
$$

Atmospheric neutrinos traversing the Earth

Exact S-matrix for neutrinos traversing n Earth's layers (normal mass ordering):

$$
\begin{aligned}
& S^{m}=T \Pi_{i} U_{m i}^{*} e^{-i \mathcal{H}}{ }_{m i}^{d} U_{m i}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger} \\
& \mathcal{E}=\operatorname{diag}\left(e^{i\left(\frac{\Delta m_{m_{1}^{\prime}}^{\prime}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{1}^{\prime} i_{1}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{31}^{\prime}+\Delta m_{32}^{\prime}}{4 E}\right) x_{i}}\right), \quad U_{a}=U_{23} U_{\delta}, \quad \xi-\text { overall phase } \\
& P_{\alpha \beta}^{m}=\left|S_{\alpha \beta}^{m}\right|^{2}
\end{aligned}
$$

Atmospheric neutrinos traversing the Earth

Exact S-matrix for neutrinos traversing n Earth's layers (normal mass ordering):

$$
\begin{gathered}
S^{m}=T \Pi_{i} U_{m i}^{*} e^{-i \mathcal{H}_{m i}^{d}} U_{m i}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger} \\
\mathcal{E}=\operatorname{diag}\left(e^{i\left(\frac{\Delta m_{12}^{j}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{12}^{\prime}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{13}^{j}+\Delta m_{32}^{j}}{4 E}\right) x_{i}}\right), \quad U_{a}=U_{23} U_{\delta}, \quad \xi-\text { overall phase } \\
P_{\alpha \beta}^{m}=\left|S_{\alpha \beta}^{m}\right|^{2}
\end{gathered}
$$

Problem: sub-GeV oscillations faster than detector resolution in E and θ

Atmospheric neutrinos traversing the Earth

Exact S-matrix for neutrinos traversing n Earth's layers (normal mass ordering):

$$
\begin{gathered}
S^{m}=T \Pi_{i} U_{m i}^{*} e^{-i \mathcal{H}_{m i}^{d}} U_{m i}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger} \\
\mathcal{E}=\operatorname{diag}\left(e^{i\left(\frac{\Delta m_{12}^{\prime}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{12}^{\prime}}{4 E}\right) x_{i}}, e^{-i\left(\frac{\Delta m_{13}^{j}+\Delta m_{32}^{\prime}}{4 E}\right) x_{i}}\right), \quad U_{a}=U_{23} U_{\delta}, \quad \xi-\text { overall phase } \\
P_{\alpha \beta}^{m}=\left|S_{\alpha \beta}^{m}\right|^{2}
\end{gathered}
$$

Problem: sub-GeV oscillations faster than detector resolution in E and θ

Solution: average probabilities!

Averaged vs exact probabilities

$\theta=\pi / 10$

Averaged probabilities

- Numerical averaging (e.g. K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, S. J. Parke, and Y. F. Perez-Gonzalez, 1904.02751):

Averaged probabilities

- Numerical averaging (e.g. K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, S. J. Parke, and Y. F. Perez-Gonzalez, 1904.02751):
- CPU time consuming,

Averaged probabilities

- Numerical averaging (e.g. K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, S. J. Parke, and Y. F. Perez-Gonzalez, 1904.02751):
- CPU time consuming,
- No analytical form of $P_{\alpha \beta} \rightarrow$ difficult to understand its behavior \& find optimal experimental setup,

Averaged probabilities

- Numerical averaging (e.g. K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, S. J. Parke, and Y. F. Perez-Gonzalez, 1904.02751):
- CPU time consuming,
- No analytical form of $P_{\alpha \beta} \rightarrow$ difficult to understand its behavior \& find optimal experimental setup,
- Different approach: analytical averaging of $P_{\alpha \beta}$ (based on PREM model)!

Averaged probabilities

- Numerical averaging (e.g. K. J. Kelly, P. A. N. Machado, I. Martinez-Soler, S. J. Parke, and Y. F. Perez-Gonzalez, 1904.02751):
- CPU time consuming,
- No analytical form of $P_{\alpha \beta} \rightarrow$ difficult to understand its behavior \& find optimal experimental setup,
- Different approach: analytical averaging of $P_{\alpha \beta}$ (based on PREM model)!

How to do it?

Averaging probabilities 1

1. Approximate exact S^{m}-matrix:

$$
\begin{gathered}
S^{m}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger}=\ldots \mathcal{E}_{i} O_{i 12}^{m T} \overbrace{O_{i 13}^{m T} O_{(i+1) 13}^{m T} O_{(i+1) 12}^{m T} \mathcal{E}_{i+1} \ldots}^{\approx \mathcal{I}} . \\
S^{m} \approx U_{0} T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right) U_{0}^{\dagger}, \quad U_{0}=O_{23} O_{\delta} O_{13}
\end{gathered}
$$

Averaging probabilities 1

1. Approximate exact S^{m}-matrix:

$$
\begin{gathered}
S^{m}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger}=\ldots \mathcal{E}_{i} O_{i 12}^{m T} \overbrace{O_{i 13}^{m T} T}^{\approx \mathcal{I}} O_{(i+1) 13}^{m T} O_{(i+1) 12}^{m T} \mathcal{E}_{i+1} \ldots \\
S^{m} \approx U_{0} T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right) U_{0}^{\dagger}, \quad U_{0}=O_{23} O_{\delta} O_{13}
\end{gathered}
$$

2. Separate product (and S^{m}) into the form:

$$
\begin{array}{r}
T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right)=\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
S^{m} \approx \underbrace{U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}}_{A}+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} \underbrace{U_{0}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) U_{0}^{\dagger}}_{B}
\end{array}
$$

Averaging probabilities 2

We have:

$$
S^{m} \approx A+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} B
$$

Averaging probabilities 2

We have:

$$
S^{m} \approx A+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} B
$$

3. Obtain probability:

$$
P^{m}(E, \theta)_{\alpha \beta}=\left|A_{\beta \alpha}\right|^{2}+2 \Re\left[A_{\beta \alpha}^{*} B_{\beta \alpha} \Pi_{i}\left(\mathcal{E}_{i}\right)_{33}\right]+\left|B_{\beta \alpha}\right|^{2}
$$

Averaging probabilities 2

We have:

$$
S^{m} \approx A+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} B
$$

3. Obtain probability:

$$
P^{m}(E, \theta)_{\alpha \beta}=\left|A_{\beta \alpha}\right|^{2}+2 \Re\left[A_{\beta \alpha}^{*} B_{\beta \alpha} \Pi_{i}\left(\mathcal{E}_{i}\right)_{33}\right]+\left|B_{\beta \alpha}\right|^{2}
$$

4. Average out quickly oscillating term \equiv average probability:

$$
\bar{P}^{m}(E, \theta)_{\alpha \beta}=\left|A_{\beta \alpha}\right|^{2}+2 \Re\left[A _ { \beta \alpha } ^ { * } B _ { \beta \alpha } \Pi _ { i } \left(\widehat{\left.\left.\mathcal{E}_{i}\right)_{33}\right]}+\left|B_{\beta \alpha}\right|^{2}\right.\right.
$$

Averaged probability - the A matrix

$$
\bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }}
$$

Averaged probability - the A matrix

$$
\begin{aligned}
& \bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }} \\
& A=U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}=U_{0} X U_{0}^{\dagger}
\end{aligned}
$$

Averaged probability - the A matrix

$$
\begin{gathered}
\bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }} \\
A=U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}=U_{0} X U_{0}^{\dagger}
\end{gathered}
$$

- $X-2 \times 2$ symmetric, unitary, $\operatorname{det} X=1$

Averaged probability - the A matrix

$$
\begin{aligned}
& \bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }} \\
& A=U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}=U_{0} X U_{0}^{\dagger}
\end{aligned}
$$

- $X-2 \times 2$ symmetric, unitary, $\operatorname{det} X=1$

$$
X=\left(\begin{array}{cc}
\cos \alpha_{X} e^{-i \phi_{X}} & -i \sin \alpha_{X} \\
-i \sin \alpha_{X} & \cos \alpha_{X} e^{i \phi_{X}}
\end{array}\right)
$$

Averaged probability - the A matrix

$$
\begin{aligned}
& \bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }} \\
& A=U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}=U_{0} X U_{0}^{\dagger}
\end{aligned}
$$

- $X-2 \times 2$ symmetric, unitary, $\operatorname{det} X=1$

$$
X=\left(\begin{array}{cc}
\cos \alpha_{X} e^{-i \phi_{X}} & -i \sin \alpha_{X} \\
-i \sin \alpha_{X} & \cos \alpha_{X} e^{i \phi_{X}}
\end{array}\right)
$$

- $\phi_{X}(E, \theta), \alpha_{X}(E, \theta)$ from numerical fits,

Averaged probability - the A matrix

$$
\begin{gathered}
\bar{P}_{\alpha \beta}^{m} \approx \underbrace{\left|A_{\beta \alpha}\right|^{2}}_{\text {insteresting! }}+\underbrace{\left|B_{\beta \alpha}\right|^{2}}_{\text {constant }} \\
A=U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}=U_{0} X U_{0}^{\dagger}
\end{gathered}
$$

- $X-2 \times 2$ symmetric, unitary, $\operatorname{det} X=1$

$$
X=\left(\begin{array}{cc}
\cos \alpha_{X} e^{-i \phi_{X}} & -i \sin \alpha_{X} \\
-i \sin \alpha_{X} & \cos \alpha_{X} e^{i \phi_{X}}
\end{array}\right)
$$

- $\phi_{X}(E, \theta), \alpha_{X}(E, \theta)$ from numerical fits,
- \cdots or analytical approximation for $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$ for n-layers.

Analytical approximation for $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$ for k-layers

1. Expand product in $S^{m}=U_{0} T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right) U_{0}^{\dagger}$ in terms of small parameter:

$$
\epsilon_{i}=\sin 2 \theta_{i 12}^{m} \propto \frac{1}{E V_{i}}
$$

Analytical approximation for $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$ for k-layers

1. Expand product in $S^{m}=U_{0} T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right) U_{0}^{\dagger}$ in terms of small parameter:

$$
\epsilon_{i}=\sin 2 \theta_{i 12}^{m} \propto \frac{1}{E V_{i}}
$$

2. Keep terms linear in ϵ,

Analytical approximation for $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$ for k-layers

1. Expand product in $S^{m}=U_{0} T \Pi_{i}\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right) U_{0}^{\dagger}$ in terms of small parameter:

$$
\epsilon_{i}=\sin 2 \theta_{i 12}^{m} \propto \frac{1}{E V_{i}}
$$

2. Keep terms linear in ϵ,

Result: remarkably compact formulas!

$$
\begin{gathered}
\phi_{X}=\nu_{1}+\nu_{2}+\ldots+\frac{1}{2} \nu_{k}, \quad \nu_{i} \approx V_{i} \cos ^{2} 2 \theta_{13} x_{i}(\theta) \\
\sin \alpha_{X}=\left(\epsilon_{k}-\epsilon_{k-1}\right) \sin \frac{\nu_{k}}{2}+\left(\epsilon_{k-1}-\epsilon_{k-2}\right) \sin \left(\nu_{k-1}+\frac{\nu_{k}}{2}\right)+\ldots \\
+\left(\epsilon_{2}-\epsilon_{1}\right) \sin \left(\nu_{2}+\nu_{3}+\ldots+\frac{\nu_{k}}{2}\right)+\epsilon_{1} \sin \left(\nu_{1}+\nu_{2}+\ldots \frac{\nu_{k}}{2}\right)
\end{gathered}
$$

Similar approach works for antineutrinos!

Features of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$

- $\phi_{X}(E, \theta)=\phi_{X}(\theta)$
- $\sin \alpha_{X}(E, \theta)=f(\theta) / E$

Features of $\phi_{\chi}(E, \theta)$ and $\alpha_{X}(E, \theta)$

- $\phi_{X}(E, \theta)=\phi_{X}(\theta)$
- $\sin \alpha_{X}(E, \theta)=f(\theta) / E$

Numerical fits vs analytical approximation

Numerical fits vs analytical approximation

Numerical fits vs analytical approximation

Works for $E>300 \mathrm{MeV}$!

Behavior of probabilities

Result No. 1 - analytical formulas for averaged oscillation probabilities:

$$
\begin{gathered}
\bar{P}^{m}(E, \theta)_{\alpha \beta}=\bar{P}^{m}\left(\phi_{X}(E, \theta), \alpha_{X}(E, \theta)\right) \\
\text { e.g. } \bar{P}_{\mu e}^{m} \approx 0.024+0.450 \sin ^{2} \alpha_{X}-0.0724 \sin 2 \alpha_{X} \underbrace{\sin \left(\delta+\phi_{X}\right)}_{\delta \text { dependence }}
\end{gathered}
$$

Analytical understanding of $\bar{P}{ }_{\alpha \beta}^{m} \equiv$ better chances for δ detection!

Behavior of probabilities

Result No. 1 - analytical formulas for averaged oscillation probabilities:

$$
\begin{gathered}
\bar{P}^{m}(E, \theta)_{\alpha \beta}=\bar{P}^{m}\left(\phi_{X}(E, \theta), \alpha_{X}(E, \theta)\right) \\
\text { e.g. } \bar{P}_{\mu e}^{m} \approx 0.024+0.450 \sin ^{2} \alpha_{X}-0.0724 \sin 2 \alpha_{X} \underbrace{\sin \left(\delta+\phi_{X}\right)}_{\delta \text { dependence }}
\end{gathered}
$$

Analytical understanding of $\bar{P}_{\alpha \beta}^{m} \equiv$ better chances for δ detection!

Noticing $N_{\nu_{\mu}}=2 N_{\nu_{e}} \rightarrow$ quantity that gives number of neutrinos observed by detectors:

$$
\bar{P}_{e}^{m}=\bar{P}_{e e}^{m}+2 \bar{P}_{\mu e}^{m} \approx 1.00-\underbrace{0.94 \sin ^{2} \alpha_{X}}_{\alpha 1 / E^{2}}-0.143 \underbrace{\sin 2 \alpha_{X} \sin \left(\delta+\phi_{X}\right)}_{\alpha g(\theta) / E}
$$

Optimal azimuthal angles

Result No. 2 - azimuthal angles optimized for δ detection:

Optimal azimuthal angles

Result No. 2 - azimuthal angles optimized for δ detection:
$\theta_{1,2,3}$ (vertical lines) - angles that maximize effects of δ on \bar{P}_{e}^{m} :

Optimal azimuthal angles

Result No. 2 - azimuthal angles optimized for δ detection:
$\theta_{1,2,3}$ (vertical lines) - angles that maximize effects of δ on \bar{P}_{e}^{m} :

$$
\theta_{1}=0.12 \pi, \quad \theta_{2}=0.18 \pi, \quad \theta_{3}=0.39 \pi
$$

Optimal observable $\Delta \bar{P}_{e}^{m}$

Result No. 3- Observable optimized for δ measurement \equiv strongest δ dependence:

Optimal observable $\Delta \bar{P}_{e}^{m}$

Result No. 3- Observable optimized for δ measurement \equiv strongest δ dependence:

$$
\bar{P}_{e}^{m} \approx \underbrace{1.00-0.94 \sin ^{2} \alpha_{X}}_{\text {no } \delta \text { dependence }}-0.143 \sin 2 \alpha_{X} \sin \left(\delta+\phi_{X}\right)
$$

Optimal observable $\Delta \bar{P}_{e}^{m}$

Result No. 3- Observable optimized for δ measurement \equiv strongest δ dependence:

$$
\bar{P}_{e}^{m} \approx \underbrace{1.00-0.94 \sin ^{2} \alpha_{X}}_{\text {no } \delta \text { dependence }}-0.143 \sin 2 \alpha_{X} \sin \left(\delta+\phi_{X}\right)
$$

$$
\Delta \bar{P}_{e}^{m}\left(E_{1}, E_{2}, \theta, \delta\right)=\frac{E_{1}^{2}}{E_{2}^{2}} \bar{P}_{e}^{m}\left(E_{1}, \theta\right)-\bar{P}_{e}^{m}\left(E_{2}, \theta\right)-\left(1-\frac{\sin 2 \theta_{13} \cos 2 \theta_{23}}{2}\right)\left(\frac{E_{1}^{2}}{E_{2}^{2}}-1\right)
$$

Optimal observable $\Delta \bar{P}_{e}^{m}$

Result No. 3- Observable optimized for δ measurement \equiv strongest δ dependence:

$$
\bar{P}_{e}^{m} \approx \underbrace{1.00-0.94 \sin ^{2} \alpha_{X}}_{\text {no } \delta \text { dependence }}-0.143 \sin 2 \alpha_{X} \sin \left(\delta+\phi_{X}\right)
$$

$$
\begin{gathered}
\Delta \bar{P}_{e}^{m}\left(E_{1}, E_{2}, \theta, \delta\right)=\frac{E_{1}^{2}}{E_{2}^{2}} \bar{P}_{e}^{m}\left(E_{1}, \theta\right)-\bar{P}_{e}^{m}\left(E_{2}, \theta\right)-\left(1-\frac{\sin 2 \theta_{13} \cos 2 \theta_{23}}{2}\right)\left(\frac{E_{1}^{2}}{E_{2}^{2}}-1\right) \\
\Delta \bar{P}_{e}^{m}\left(E_{1}, E_{2}, \theta, \delta\right) \approx-0.14\left(\frac{E_{1}^{2}}{E_{2}^{2}} \sin 2 \alpha_{X}\left(E_{1}\right)-\sin 2 \alpha_{X}\left(E_{2}\right)\right) \sin \left(\delta+\phi_{X}\right) \\
\Delta \bar{P}_{e}^{m}\left(E_{1}, E_{2}, \theta, \delta\right) \propto \sin \left(\delta+\phi_{X}\right)
\end{gathered}
$$

Optimal observable $\Delta \bar{P}_{e}^{m}$

E1 $=400 \mathrm{MeV}$, E2=1000 MeV

Summary

Main results:

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},
4. Optimal azimuthal angles $\theta_{1}, \theta_{2}, \theta_{3}$,

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},
4. Optimal azimuthal angles $\theta_{1}, \theta_{2}, \theta_{3}$,
5. Optimal observable $\Delta \bar{P}_{e}^{m}$.

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},
4. Optimal azimuthal angles $\theta_{1}, \theta_{2}, \theta_{3}$,
5. Optimal observable $\Delta \bar{P}_{e}^{m}$.

What's next?

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},
4. Optimal azimuthal angles $\theta_{1}, \theta_{2}, \theta_{3}$,
5. Optimal observable $\Delta \bar{P}_{e}^{m}$.

What's next?

1. More realistic analysis including experiment characteristics and simulations (DUNE and T2HK),

Summary

Main results:

1. General formula for averaged oscillation probabilities $\bar{P}_{\alpha \beta}^{m}$ in terms of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
2. Analytical parametrization of $\phi_{X}(E, \theta)$ and $\alpha_{X}(E, \theta)$,
3. Analytical understanding of averaged $\bar{P}_{\alpha \beta}^{m}$ and \bar{P}_{e}^{m},
4. Optimal azimuthal angles $\theta_{1}, \theta_{2}, \theta_{3}$,
5. Optimal observable $\Delta \bar{P}_{e}^{m}$.

What's next?

1. More realistic analysis including experiment characteristics and simulations (DUNE and T2HK),
2. Apply similar approach to other celestial bodies (e.g. stars, neutron stars).

Thank you!

Additional slides

Neutrino oscillations in vacuum

- $m_{\odot}^{2}=m_{2}^{2}-m_{1}^{2}, m_{a}^{2}=m_{3}^{2}-m_{1}^{2}$
- Normal Mass Ordering (NO) with $m_{1}<m_{2}<m_{3}$
- Inverted Mass Ordering (IO) with $m_{3}<m_{1}<m_{2}$

Quantity	Value (NO)	Value (IO)
δ_{CP}	$\left(218_{-27}^{+38}\right)^{\circ}$	$\left(281_{-27}^{+23}\right)^{\circ}$
θ_{12}	$\left(34.5_{-1.0}^{+1.2}\right)^{\circ}$	$\left(34.5_{-1.0}^{+1.2}\right)^{\circ}$
θ_{23}	$\left(47.7_{-1.7}^{+1.2}\right)^{\circ}$	$\left(47.9_{-1.7}^{+1.0}\right)^{\circ}$
θ_{13}	$\left(8.45_{-0.14}^{+0.16}\right)^{\circ}$	$\left(8.53_{-0.15}^{+0.14}\right)^{\circ}$
Δm_{\odot}^{2}	$7.55_{-0.16}^{+0.20} \times 10^{-5} \mathrm{eV}^{2}$	$7.55_{-0.16}^{+0.20} \times 10^{-5} \mathrm{eV}^{2}$
Δm_{a}^{2}	$+2.50 \pm 0.03 \times 10^{-3} \mathrm{eV}^{2}$	$-2.42_{-0.04}^{+0.03} \times 10^{-3} \mathrm{eV}^{2}$

Effective parameters

$$
\begin{gather*}
\sin 2 \theta_{13}^{m}=\frac{\sin 2 \theta_{13}}{\sqrt{\left(\cos 2 \theta_{13}-\epsilon_{a}\right)^{2}+\sin ^{2} 2 \theta_{13}}}, \quad \Delta m_{e e}^{2}=c_{12}^{2} \Delta m_{a}^{2}+s_{12}^{2}\left(\Delta m_{a}^{2}-\Delta m_{\odot}^{2}\right) \\
\sin 2 \theta_{13}^{\prime}=\frac{\epsilon_{a} \sin 2 \theta_{13}}{\sqrt{\left(\cos 2 \theta_{13}-\epsilon_{a}\right)^{2}+\sin ^{2} 2 \theta_{13}}}, \quad \epsilon_{a}=\frac{2 E V}{\Delta m_{e e}^{2}} \tag{1}\\
\sin 2 \theta_{12}^{m}=\frac{\cos \theta_{13}^{\prime} \sin 2 \theta_{12}}{\sqrt{\left(\cos 2 \theta_{12}-\epsilon_{\odot}\right)^{2}+\cos ^{2} \theta_{13}^{\prime} \sin ^{2} 2 \theta_{12}}}, \quad \epsilon_{\odot}=\frac{2 E V}{\Delta m_{\odot}^{2}}\left(\cos ^{2}\left(\theta_{13}+\theta_{13}^{\prime}\right)+\frac{\sin ^{2} \theta_{13}^{\prime}}{\epsilon_{a}}\right) \\
\mathcal{H}_{2}-\mathcal{H}_{1} \equiv \frac{\Delta m_{21}^{2}}{2 E}=\frac{\Delta m_{\odot}^{2}}{2 E} \sqrt{\left(\cos 2 \theta_{12}-\epsilon_{\odot}\right)^{2}+\cos ^{2} \theta_{13}^{\prime} \sin ^{2} 2 \theta_{12}} \tag{2}\\
\mathcal{H}_{3}-\mathcal{H}_{1} \equiv \frac{\Delta m_{31}^{2}}{2 E}=\frac{3}{4} \frac{\Delta m_{e e}^{2}}{2 E} \sqrt{\left(\cos 2 \theta_{13}-\epsilon_{a}\right)^{2}+\sin ^{2} 2 \theta_{13}+} \\
\frac{1}{4}\left[\frac{\Delta m_{e e}^{2}}{2 E}+V\right]+\frac{1}{4 E}\left(\Delta m_{21}^{2}-\Delta m_{\odot}^{2} \cos 2 \theta_{12}\right) \tag{3}
\end{gather*}
$$

Averaging probabilities 1

1. Take exact S^{m}-matrix:

$$
S^{m}=e^{i \xi} U_{a} T \Pi_{i}\left(O_{i 13}^{m} O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T}\right) U_{a}^{\dagger}=\ldots \mathcal{E}_{i} O_{i 12}^{m T} O_{i 13}^{m T} O_{(i+1) 13}^{m T} O_{(i+1) 12}^{m T} \mathcal{E}_{i+1} \ldots
$$

2. Simplify $O_{i 13}^{m T} O_{(i+1) 13}^{m T}$ products (works for realistic Earth densities):

$$
\begin{gathered}
O_{i 13}^{m T} O_{(i+1) 13}^{m T}=\left(\begin{array}{ccc}
\cos \left(\theta_{i 13}^{m}-\theta_{(i+1) i 13}^{m}\right) & 0 & \sin \left(\theta_{i 13}^{m}-\theta_{(i+1) i 13}^{m}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{i 13}^{m}-\theta_{(i+1) i 13}^{m}\right) & 0 & \cos \left(\theta_{i 13}^{m}-\theta_{(i+1) i 13}^{m}\right)
\end{array}\right) \approx\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\mathcal{O}\left(10^{-2}\right) \\
S^{m} \approx O_{13-\text { first }}^{m} T \Pi_{i} \underbrace{\left(O_{i 12}^{m} \mathcal{E}_{i} O_{i 12}^{m T}\right)}_{2 \times 2 \text { matrix }} O_{13-\text { last }}^{m T}
\end{gathered}
$$

3. Assume $O_{13-\text { first }}^{m}=O_{13 \text {-last }}^{m}=O_{13}$ \& obtain simplified S^{m} matrix:

$$
S^{m} \approx U_{0}\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{21} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) U_{0}^{\dagger}+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} U_{0}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) U_{0}^{\dagger} \equiv A+\Pi_{i}\left(\mathcal{E}_{i}\right)_{33} B, \quad U_{0}=O_{23} U_{\delta} O_{13}
$$

Numerical vs analytical averaging

- $\theta=\pi / 10$
- Exact $P_{\alpha \beta}$ - blue line
- Numerical averaging $\hat{P}_{\alpha \beta}$ - orange line
- Analytical averaging $\bar{P}_{\alpha \beta}^{m}(E, \theta)$ - green line

Numerical averaging

$$
\hat{P}_{\alpha \beta}(E, \theta)=\frac{1}{4 \Delta E} \int_{E-2 \Delta E}^{E-2 \Delta E} P_{\alpha \beta}\left(E^{\prime}\right) d E^{\prime} d \theta
$$

Averaging over 4 periods ΔE of "fast" oscillation in energy:

$$
\Delta E=\frac{4 \pi E}{\Delta m_{a}^{2} L(\theta)}
$$

Finite resolutions

$$
\begin{aligned}
\bar{P}_{\alpha \beta}(E, \theta) & =\frac{1}{\Delta E \Delta \theta} \int_{E-\frac{\Delta E}{2}}^{E+\frac{\Delta E}{2}} \int_{\theta-\frac{\Delta \theta}{2}}^{\theta+\frac{\Delta \theta}{2}} P_{\alpha \beta}\left(E^{\prime}, \theta^{\prime}\right) d E^{\prime} d \theta^{\prime} \\
& =\frac{1}{\Delta \theta} \int_{\theta-\frac{\Delta \theta}{2}}^{\theta+\frac{\Delta \theta}{2}} P_{\alpha \beta}\left(E, \theta^{\prime}\right) d \theta^{\prime}+\mathcal{O}\left(\frac{\Delta E^{2}}{E^{2}}\right)
\end{aligned}
$$

