Non-Unitary Mixing Matrices in Neutrino and Vector-like Quark Models

Pedro M. F. Pereira
Instituto Superior Técnico
pedromanuelpereira@tecnico.ulisboa.pt
In collaboration with:
G.C. Branco, M.N. Rebelo, J.I. Silva-Marcos, C.C. Nishi, J.T. Penedo, J.M. Alves, A.L. Cherchiglia

Corfu, September 4, 2021

Cofinanciado por:

Overview

(1) Motivation
(2) Mass Matrices and their Diagonalisation
(3) Interactions
(4) Parameterisation
(5) Usefulness
(6) Used in

Motivation

Approximations are common in literature.

- Neutrinos: Seesaw approximation, Casas-Ibarra, Fernandez-Martinez et al. ${ }^{1}, \ldots$
- VLQs: Common assumption that heavy VLQs only couple to third generation quarks.

What if you want to study a region... where these approximations fail? What if you want to ... perform a general scan of the parameter space, without biases?

[^0]
Mass Matrices and their Diagonalisation

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{M}}=-\left(\begin{array}{cc}
\bar{d}_{L}^{0} & \bar{D}_{L}^{0}
\end{array}\right) \mathcal{M}_{d}\binom{d_{R}^{0}}{D_{R}^{0}}-\left(\begin{array}{cc}
\bar{u}_{L}^{0} & \bar{U}_{L}^{0}
\end{array}\right) \mathcal{M}_{u}\binom{u_{R}^{0}}{U_{R}^{0}}+\text { h.c. }, \\
& \mathcal{L}_{m}=-\left[\frac{1}{2} n_{L}^{T} C^{*} \mathcal{M}^{*} n_{L}+\bar{L}_{L} d_{l} I_{R}\right]+\text { h.c. }, \\
& \left.\mathcal{M}_{q}=\left(\begin{array}{c:c}
m_{q} & \bar{m}_{q} \\
\hdashline \underbrace{}_{3} & \underbrace{M_{q}}_{n_{q}}
\end{array}\right)\right\}^{3}, \begin{array}{l}
3
\end{array}, \quad \mathcal{M}=\left(\begin{array}{c:c}
\mathbf{0} & m \\
\hdashline m^{T} & \underbrace{M}_{3}
\end{array}\right) \underbrace{}_{n_{R}}\}_{n_{R}}^{3},
\end{aligned}
$$

Mass Matrices and their Diagonalisation

$$
\begin{aligned}
& \mathcal{V}_{L}^{q \dagger} \mathcal{M}_{q} \mathcal{V}_{R}^{q}=\mathcal{D}_{q} \\
& \mathcal{V}^{\top} \mathcal{M}^{*} \mathcal{V}=\mathcal{D}, \\
& \mathcal{V}_{\chi}^{q}=\left(\begin{array}{c}
A_{\chi}^{q} \\
\cdots \\
B_{\chi}^{q}
\end{array}\right), \quad \mathcal{V}=\binom{A}{\cdots}, \\
& \chi=L, R, q=u, d \\
& A=3 \times(3+n), B=n \times(3+n)
\end{aligned}
$$

Unitary $\mathcal{V} s$: equations relating A, B with $\mathbf{0}$ and $\mathbb{1}$ matrices.

Mass Matrices and their Diagonalisation

$$
\begin{aligned}
& m_{q}=A_{L}^{q} \mathcal{D}_{q} A_{R}^{q \dagger} \\
& \bar{m}_{q}=A_{L}^{q} \mathcal{D}_{q} B_{R}^{q \dagger} \\
& \bar{M}_{q}=B_{L}^{q} \mathcal{D}_{q} A_{R}^{q \dagger} \\
& M_{q}=B_{L}^{q} \mathcal{D}_{q} B_{R}^{q \dagger}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{0}=A \mathcal{D} A^{T} \\
& m=A \mathcal{D} B^{T} \\
& M=B \mathcal{D} B^{T}
\end{aligned}
$$

Interactions

Charged Currents:

$$
\begin{gathered}
\mathcal{L}_{W}=-\frac{g}{\sqrt{2}}\left(\begin{array}{ll}
\bar{u}_{L} & \bar{U}_{L}
\end{array}\right) V \gamma^{\mu}\binom{d_{L}}{D_{L}} W_{\mu}^{+}+\text {h.c. } \\
\mathcal{L}_{W}=-\frac{g}{\sqrt{2}} \bar{l}_{L} V \gamma^{\mu}\binom{n_{L}}{N_{L}} W_{\mu}^{+}+\text {h.c. } \\
V=A_{L}^{u^{\dagger}} A_{L}^{d} \\
\quad V=A
\end{gathered}
$$

Interactions

Neutral Interactions:

$$
\begin{gathered}
\mathcal{L}_{Z}=-\frac{g}{2 \cos \theta_{W}} Z_{\mu}\left[\left(\begin{array}{ll}
\bar{q}_{L} & \overline{Q_{L}}
\end{array}\right) F^{q} \gamma^{\mu}\binom{q_{L}}{Q_{L}}+\right.\text { h.c. } \\
\mathcal{L}_{H}=-\frac{h}{v}\left[\left(\begin{array}{ll}
\bar{q}_{L} & \bar{Q}_{L}
\end{array}\right) F^{q} \mathcal{D}_{q}\binom{q_{R}}{Q_{R}}\right]+\text { h.c. } \\
\mathcal{L}_{Z}=-\frac{g}{2 \cos \theta_{W}} Z_{\mu}\left[\left(\begin{array}{ll}
\overline{n_{L}} & \overline{N_{L}}
\end{array}\right) F \gamma^{\mu}\binom{n_{L}}{N_{L}}\right]+\text { h.c. } \\
\mathcal{L}_{H}=-\frac{h}{v}\left[\begin{array}{ll}
\left(\bar{n}_{L}\right. & \left.\left.\bar{N}_{L}\right) F \mathcal{D}\binom{n_{L}^{c}}{N_{L}^{c}}\right]+ \text { h.c. } \\
F^{q}=A_{L}^{q^{\dagger}} A_{L}^{q}
\end{array} \quad F=A^{\dagger} A\right.
\end{gathered}
$$

Parameterisation

$$
\left.\mathcal{V}_{\chi}^{q}=\left(\begin{array}{c:c}
K_{\chi}^{q} & K_{\chi}^{q} X_{\chi}^{q \dagger} \\
\hdashline \underbrace{-\bar{K}_{\chi}^{q} X_{\chi}^{q}}_{3} & \underbrace{\bar{K}_{\chi}^{q}}_{n_{q}}
\end{array}\right)\right\}^{3}{ }^{3} \cdot \mathcal{n _ { q }} \quad . \mathcal{V}=\left(\begin{array}{c:c}
K & K X^{\dagger} \\
\hdashline-\bar{K} x & \bar{K}
\end{array}\right) \underbrace{\underbrace{}_{3}}_{n_{R}}\}_{n_{R}}
$$

Non-singular general complex matrices K and \bar{K}.

$$
A=\left(\begin{array}{ll}
K & K X^{\dagger}
\end{array}\right), B=\left(\begin{array}{l}
-\bar{K} X \quad \bar{K}
\end{array}\right)
$$

Parameterisation

$$
\begin{aligned}
& m_{q}=K_{L}^{q}\left(d_{q}+X_{L}^{q \dagger} D_{q} X_{R}^{q}\right) K_{R}^{q \dagger} \\
& \bar{m}_{q}=K_{L}^{q}\left(X_{L}^{q \dagger} D_{q}-d_{q} X_{R}^{q \dagger}\right) \bar{K}_{R}^{q \dagger} \\
& \bar{M}_{q}=\bar{K}_{L}^{q}\left(D_{q} X_{R}^{q}-X_{L}^{q} d_{q}\right) K_{R}^{q \dagger}, \\
& M_{q}=\bar{K}_{L}^{q}\left(D_{q}+X_{L}^{q} d_{q} X_{R}^{q \dagger}\right) \bar{K}_{R}^{q \dagger} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{0}=d+X^{\dagger} D X^{*} \\
& m=K X^{\dagger} D\left(Z^{-1}\right)^{*} \\
& M=Z\left(D+X d X^{T}\right) Z^{T}
\end{aligned}
$$

WB where \bar{m}_{q} is $\mathbf{0}$ (always possible, same for \bar{M}_{q})

$$
\begin{aligned}
& X_{L}^{q}=\sqrt{D^{-1}} P^{q} \sqrt{d} \\
& X_{R}^{q}=\sqrt{D} P^{q} \sqrt{d^{-1}}
\end{aligned}
$$

Parameterisation

$$
\begin{array}{cc}
K_{X}^{q}=U_{K}\left(\mathbb{1}_{3}+X_{L}^{q \dagger} X_{L}^{q}\right)^{-1 / 2}, & K=U_{K}\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1 / 2} \\
\bar{K}_{X}^{q}=U_{K}\left(\mathbb{1}_{n_{q}}+X_{L}^{q} X_{L}^{q \dagger}\right)^{-1 / 2} . & \bar{K}=U_{\bar{K}}\left(\mathbb{1}_{R}+X X^{\dagger}\right)^{-1 / 2}, \\
K_{C K M}=K_{L}^{u \dagger} K_{L}^{d} & K_{P M N S}=K \\
F^{q}=\left(\begin{array}{cc}
\left(\mathbb{1}_{3}+X_{L}^{q \dagger} X_{L}^{q}\right)^{-1} & \left(\mathbb{1}_{3}+X_{L}^{q \dagger} X^{q}\right)^{-1} X_{L}^{q \dagger} \\
X_{L}^{q}\left(\mathbb{1}_{3}+X_{L}^{q Q^{q}} X_{L}^{q}\right)^{-1} & X_{L}^{q}\left(\mathbb{1}_{3}+X_{L}^{q \dagger} X_{L}^{q}\right)^{-1} X_{L}^{q \dagger}
\end{array}\right) \\
F=\left(\begin{array}{cc}
\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1} & \left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1} X^{\dagger} \\
X\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1} & X\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1} X^{\dagger}
\end{array}\right)
\end{array}
$$

Parameterisation

$$
\mathcal{V}=\left(\begin{array}{cc}
U_{K}\left(1_{3}+x^{\dagger} X\right)^{-1 / 2} & U_{K}\left(1_{3}+x^{\dagger} X\right)^{-1 / 2} x^{\dagger} \\
-U_{K}\left(1_{n_{R}}+x x^{\dagger}\right)^{-1 / 2} X & U_{K}\left(1_{n_{R}}+x x^{\dagger}\right)^{-1 / 2}
\end{array}\right)
$$

Parameterisations in the leptonic sector with a similar structure existed in the literature prior to this work [2] [3], but are either approximations or a special case of this one.

[^1]
Procedure

- Start with d, D, U_{K} and O_{c} / P^{q}
- Calculate X
- Calculate mass matrices, V and F

Done. Everything at tree level is exact.

Things to worry about:

- Radiative Corrections on the light neutrino masses
- Perturbativity (Heavy masses and deviations from unitarity are in a "seesaw")

Usefulness

- Exact Formulas at tree level.
- Easy to implement numerically.
- (In principle) Extendable to any model with non-unitary mixing matrices: Inverse Seesaw, Linear Seesaw, type-II and type-III seesaw, models with vector like fermions and scalars, ...

Used in: Neutrinos

Neutrino spectra were considered where the seesaw approximation fails:

```
Eur. Phys. J. C (2018) 78:895
https://doi.org/10.1140/epjc/s10052-018-6347-2
```


Regular Article - Theoretical Physics

Can one have significant deviations from leptonic 3×3 unitarity in the framework of type I seesaw mechanism?

Nuno Rosa Agostinho ${ }^{1, \mathrm{a}}$, G. C. Branco ${ }^{2, b}$, Pedro M. F. Pereira ${ }^{2, c}$, M. N. Rebelo ${ }^{2, d}$, J. I. Silva-Marcos ${ }^{2 . e}$
${ }^{1}$ Department de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
${ }^{2}$ Centro de Física Teórica de Partículas, CFTP and Departamento de Física, Instituto Superior Técnico, IST, Universidade de Lisboa, Av. Rovisco Pais nr. 1, 1049-001 Lisbon, Portugal

All $M_{i} \sim T e V$.
Deviations from Unitarity matching the experimentally allowed upper bounds.

[^2]
Used in: Neutrinos

and where 1st order approximations deviate from the exact result:

Type-I seesaw with eV-scale neutrinos
G.C. Branco, ${ }^{\alpha \beta}$ J.T. Penedo, ${ }^{\alpha}$ Pedro M.F. Pereira, ${ }^{a}$ M.N. Rebelo ${ }^{\alpha, b, 1}$
and J.I. Silva-Marcos ${ }^{a}$
${ }^{a}$ Centro de Fisica Tébrica de Particulas, CFTP, Departamento de Física,
Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais nr. 1, 1049-001 Lisboa, Portugal
${ }^{\circ}$ CERRN, Theoretical Physics Department,
CH-1211 Geneva 23, Sunizerland
$M_{i} \sim \mathrm{eV}, \mathrm{eV}, \mathrm{GUT} ; \quad M_{i} \sim \mathrm{eV}, \mathrm{KeV}, \mathrm{GUT} ; \quad M_{i} \sim \mathrm{eV}, \mathrm{TeV}, \mathrm{TeV} ;$
Spectra that could explain the ShortBaseline Anomaly; Effects on CP asymmetries measurable in LongBaseline Experiments.

[^3]
Used in: VLQs

Addressing the CKM unitarity problem with a vector-like up quark

```
G.C. Branco, J.T. Penedo, Pedro M.F. Pereira, M.N. Rebelo and J.I. Silva-Marcos
    Centro de Física Teórica de Partículas, CFTP,
    Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,
    Avenida Rovisco Pais nr. 1, 1049-001 Lisboa, Portugal
```

- In [6], one up VLQ was introduced to explain the CKM unitarity problem. Still tractable in the standard PDG parameterisation. Our parameterisation is useful when $n_{q}>1$.
- A Review on VLQs, in collaboration with C.C. Nishi and A.L. Cherchiglia, expected 2022 on arXiv.

[^4]
The End

Thank You!

Backup Slides

$$
\mathcal{V}=\left(\begin{array}{ll}
K & R \tag{5}\\
S & Z
\end{array}\right)
$$

where K, R, S and Z are 3×3 matrices. For K and Z non singular, we may write

$$
\mathcal{V}=\left(\begin{array}{cc}
K & 0 \tag{6}\\
0 & Z
\end{array}\right)\left(\begin{array}{cc}
\mathbb{I} & Y \\
-X & \mathbb{I}
\end{array}\right) ; \quad-X=Z^{-1} S ; \quad Y=K^{-1} R
$$

From the unitary relation $\mathcal{V} \mathcal{V}^{\dagger}=\mathbb{I}_{(6 \times 6)}$, we promptly conclude that

$$
\begin{equation*}
Y=X^{\dagger} . \tag{7}
\end{equation*}
$$

The matrix \mathcal{V} can thus be written:

$$
\mathcal{V}=\left(\begin{array}{cc}
K & K X^{\dagger} \tag{8}\\
-Z X & Z
\end{array}\right)
$$

Backup Slides

2.2 Exact relations at tree level

From eqs. (2.3) and (2.7), one can extract a general and exact formula for the neutrino Dirac mass matrix m in eq. (2.2), valid for any weak basis and any scale of M :

$$
\begin{equation*}
m=K X^{\dagger} D\left(Z^{-1}\right)^{*}=-i K \sqrt{d} O_{c}^{\dagger} \sqrt{D}\left(Z^{-1}\right)^{*} \tag{2.16}
\end{equation*}
$$

Recall that, in our working weak basis, m_{l} is diagonal and K is directly identified with the non-unitary PMNS matrix. Moreover, K and Z take the forms given in eq. (2.11) and one has:

$$
\begin{align*}
m & =V \sqrt{\left(\mathbb{1}+X^{\dagger} X\right)^{-1}} X^{\dagger} D \sqrt{\mathbb{1}+X^{*} X^{T}} \tag{2.17}\\
& =-i V \sqrt{\left(\mathbb{1}+X^{\dagger} X\right)^{-1}} \sqrt{d} O_{c}^{\dagger} \sqrt{D} \sqrt{\mathbb{1}+X^{*} X^{T}}
\end{align*}
$$

This exact formula is to be contrasted with the known parametrisation for the neutrino Dirac mass matrix developed by Casas and Ibarra [45], which is valid in the standard seesaw limit of $M \gg m$ and reads

$$
\begin{equation*}
m \simeq-i U_{\mathrm{PMNS}} \sqrt{d} O_{c}^{\mathrm{CI}} \sqrt{D}, \tag{2.18}
\end{equation*}
$$

in the weak basis where m_{l} and $M=\operatorname{diag}\left(\tilde{M}_{1}, \tilde{M}_{2}, \tilde{M}_{3}\right) \equiv \tilde{D}$ are diagonal. Here, O_{c}^{Cl} is an orthogonal complex matrix and $U_{\text {PMNS }}$ represents the approximately unitary lepton mixing matrix. In this limit of $M \gg m$, the light neutrino mass matrix m_{ν} can be approximated by:

Backup Slides

$$
\begin{equation*}
m_{\nu} \simeq-m M^{-1} m^{T} \tag{2.19}
\end{equation*}
$$

It is clear from (2.17) that one can obtain eq. (2.18) as a limiting case of eq. (2.16) through an expansion in powers of X. Keeping only the leading term, unitarity is regained with $U_{\mathrm{PMNS}} \simeq V$ and one can identify the complex orthogonal matrices: $O_{c}^{\mathrm{Cl}}=O_{c}^{\dagger}$.

As a side note, let us remark that it is possible to obtain a parametrisation for m which is exact and holds in a general weak basis by following the Casas-Ibarra procedure. One finds:

$$
\begin{equation*}
m=-i U_{\nu} \sqrt{\tilde{d}} \tilde{O}_{c}^{\mathrm{CI}} \sqrt{\tilde{D}} \Sigma_{M}^{T} \tag{2.20}
\end{equation*}
$$

where once again $\tilde{O}_{c}^{\mathrm{CI}}$ is a complex orthogonal matrix. However, \tilde{d} and \tilde{D} do not contain physical masses, but are instead diagonal matrices with non-negative entries obtained from the Takagi decompositions $-m M^{-1} m=U_{\nu} \tilde{d} U_{\nu}^{T}$ and $M=\Sigma_{M} \tilde{D} \Sigma_{M}^{T}$, with U_{ν} and Σ_{M} unitary. The matrix Σ_{M} is unphysical, as it can be rotated away by a weak basis transformation diagonalising M. Even though this parametrisation resembles that of eq. (2.17), the latter may be preferable since it directly makes use of low-energy observables. Only in the limit $M \gg m$, where eq. (2.19) and $\tilde{d} \simeq d, \tilde{D} \simeq D$ hold, does eq. (2.20) reduce to the approximate relation (2.18), in a weak basis of diagonal charged leptons and diagonal sterile neutrinos.

Backup Slides

Leptonic $C P$ asymmetries in flavor-changing H^{0} decays

J. G. Körner, A. Pilaftsis, and K. Schilcher

Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, Postfach 3980,
D-6500 Mainz, Federal Republic of Germany

(Received 25 September 1992)

Leptonic flavor-changing H^{0} decays with branching ratios of the order of $10^{-5}-10^{-6}$ may constitute an interesting framework when looking for large $C P$-violating effects. We show that leptonic $C P$ asymmetries of an intermediate H^{0} boson can be fairly large in natural scenarios of the minimal standard model with right-handed neutrinos, at a level that may be probed at future H^{0} factories.

PACS number(s): $11.30 . \mathrm{Er}, 12.15 . \mathrm{Cc}, 12.15 . \mathrm{Ji}, 14.80 . \mathrm{Gt}$
light neutrinos to be approximately massless at the tree level is

$$
\begin{equation*}
m_{D} m_{M}^{-1} m_{D}^{T}=\mathbf{0} \tag{13}
\end{equation*}
$$

As already mentioned in the introduction, eq. (13) cannot be satisfied by ordinary see-saw models for finite Majorana mass terms (i.e. $n_{R}=1$). This restriction can naturally be realized by more than one generation. Especially, one can prove that once condition (13) is valid, M^{ν} can be diagonalized by a unitary matrix U^{ν} of the form

$$
U^{\nu}=\left(\begin{array}{cc}
\left(1+\xi^{*} \xi^{T}\right)^{-\frac{1}{2}} & \xi^{*}\left(1+\xi^{T} \xi^{*}\right)^{-\frac{1}{2}} \tag{14}\\
-\xi^{T}\left(1+\xi^{*} \xi^{T}\right)^{-\frac{1}{2}} & \left(1+\xi^{T} \xi^{*}\right)^{-\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & V^{N}
\end{array}\right)
$$

where $\xi=m_{D} m_{M}^{-1}$ and V^{N} is a unitary $n_{R} \times n_{R}$ matrix that diagonalizes the following

Backup Slides

$$
\begin{gathered}
\mathcal{V}=\left(\begin{array}{cc}
U_{K}\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1 / 2} & U_{K}\left(\mathbb{1}_{3}+X^{\dagger} X\right)^{-1 / 2} X^{\dagger} \\
-U_{\bar{K}}\left(\mathbb{1}_{n_{R}}+X X^{\dagger}\right)^{-1 / 2} X & U_{\bar{K}}\left(\mathbb{1}_{n_{R}}+X X^{\dagger}\right)^{-1 / 2}
\end{array}\right) \\
\mathcal{V}^{T}=\left(\begin{array}{cc}
\left(\mathbb{1}_{3}+X^{\top} X^{*}\right)^{-1 / 2} & -X^{T}\left(\mathbb{1}_{n_{R}}+X^{*} X^{T}\right)^{-1 / 2} \\
X^{*}\left(\mathbb{1}_{3}+X^{T} X^{*}\right)^{-1 / 2} & \left(\mathbb{1}_{n_{R}}+X^{*} X^{T}\right)^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
U_{K}^{T} & 0 \\
0 & U_{\bar{K}}^{T}
\end{array}\right) \\
\xi^{*}=-X^{T} ?
\end{gathered}
$$

Backup Slides

$$
-X^{T}=\mp i \sqrt{d} O_{c}^{T} \sqrt{D^{-1}}
$$

But $\xi^{*} \equiv\left(m M^{-1}\right)^{*} \ldots$
Exact result:
$\left(\mathrm{m} \mathrm{M}^{-1}\right)^{*}=\left(\pm i K^{*} \sqrt{d} O_{c}^{T} \sqrt{D}\left(Z^{-1}\right)\right)\left(\left(Z^{\dagger}\right)^{-1}\left(D+X^{*} d X^{\dagger}\right)^{-1}\left(Z^{*}\right)^{-1}\right)$
ξ^{*} and $-X^{\top}$ roughly the same when

$$
K \sim \mathbb{1}, Z \sim \mathbb{1}, X^{*} d X^{\dagger} \sim 0
$$

[^0]: ${ }^{1}$ arXiv:1605.08774 [hep-ph], mixing matrix written using an infinite power series, truncate at your taste approach.

[^1]: ${ }^{2}$ J.G. Korner, A. Pilaftsis and K. Schilcher, Leptonic CP asymmetries in flavor changing H0 decays, Phys. Rev. D 47 (1993) 1080 [hep-ph/9301289] [INSPIRE]
 ${ }^{3}$ W. Grimus and L. Lavoura, JHEP 11, 042 (2000), arXiv:hep-ph/0008179 [hep-ph],

[^2]: ${ }^{4}$ Agostinho, N.R., Branco, G.C., Pereira, P.M.F. et al. Eur. Phys. J. C 78, 895 (2018). https://doi.org/10.1140/epjc/s10052-018-6347-2

[^3]: ${ }^{5}$ Branco, G.C., Penedo, J.T., Pereira, P.M.F. et al. J. High Energ. Phys. 2020, 164 (2020). https://doi.org/10.1007/JHEP07(2020)164

[^4]: ${ }^{6}$ Branco, G.C., Penedo, J.T., Pereira, P.M.F. et al. J. High Energ. Phys. 2021, 99 (2021). https://doi.org/10.1007/JHEP07(2021)099

