Sterile neutrinos with inverse-seesaw and Abelian flavour symmetries

Henrique B. Câmara

Departamento de Física and CFTP, Instituto Superior Técnico, Lisboa

Based on work in collaboration with **R.G. Felipe** & **F.R. Joaquim**

arXiv:[2012.04557](https://arxiv.org/abs/2012.04557)[hep-ph]

[DOI:10.1007/JHEP05\(2021\)021](https://doi.org/10.1007/JHEP05(2021)021)

Contact e-mail: henrique.b.camara@tecnico.ulisboa.pt

Workshop on the Standard Model and Beyond – Corfu Summer Institute, 4 September 2021

Inverse-seesaw (ISS)

 $\mathrm{ISS}(n_R, n_s)$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

$$
\triangleright \text{ Sterile neutrino fields:} \qquad \nu_{Ri} \ (i=1,...,n_R), \ s_i \ (i=1,...,n_s) \qquad \qquad (3+n_R+n_s) \times (3+n_R+n_s)
$$
\n
$$
-\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \mathbf{M}_{\ell} \, e_R + \overline{\nu_L} \mathbf{M}_D \nu_R + \overline{\nu_R} \mathbf{M}_R s + \frac{1}{2} \overline{s^c} \mathbf{M}_s s + \text{H.c.} \qquad \longrightarrow \mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^{\dagger} & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}
$$

Inverse-seesaw (ISS)

 $\mathrm{ISS}(n_{R},n_{s})$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

Sterile neutrino fields: ν_{Ri} $(i = 1, ..., n_R), s_i$ $(i = 1, ..., n_s)$

 $-\mathcal{L}^{\text{ISS}}_{\text{mass}} = \overline{e_L} \, \mathbf{M}_{\ell} \, e_R + \overline{\nu_L} \, \mathbf{M}_D \nu_R + \overline{\nu_R} \, \mathbf{M}_R s + \frac{1}{2} \overline{s^c} \, \mathbf{M}_s s + \text{H.c.}$

 \triangleright Effective neutrino mass matrix $(m_D, \mu_s \ll M)$:

$$
\mathbf{M}_{\text{eff}} = -\mathbf{M}_{D}^{*} (\mathbf{M}_{R}^{T})^{-1} \mathbf{M}_{s} \mathbf{M}_{R}^{-1} \mathbf{M}_{D}^{\dagger} \longrightarrow m_{\nu} \sim \mu_{s} \frac{m_{D}^{2}}{M^{2}}
$$

➢ Active-sterile mixing:

$$
\mathbf{U}_{\rm HI} \simeq \mathbf{V}_L^{\dagger} \big(0, \; \mathbf{M}_D (\mathbf{M}_R^{\dagger})^{-1} \big) \mathbf{U}_s \longrightarrow U_{\rm HI} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_s}}
$$

$$
\text{Type-I seesaw:}\hspace{1.0cm} m_{\nu} \sim \frac{m_D^2}{M} \; , \; U_{\rm HI} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{M}} \; \label{eq:pi}
$$

$$
(3 + nR + ns) \times (3 + nR + ns)
$$

$$
\mathbf{M} = \begin{pmatrix} 0 & \mathbf{M}_{D}^{*} & 0 \\ \mathbf{M}_{D}^{\dagger} & 0 & \mathbf{M}_{R} \\ 0 & \mathbf{M}_{R}^{T} & \mathbf{M}_{s} \end{pmatrix}
$$

- \triangleright The ISS is a low-scale neutrino mass generation mechanism
- \triangleright ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile neutrino mixing

Inverse-seesaw (ISS)

 $ISS(n_R, n_s)$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

 \triangleright Sterile neutrino fields: ν_{Ri} $(i = 1, ..., n_R), s_i$ $(i = 1, ..., n_s)$

 $-\mathcal{L}^{\text{ISS}}_{\text{mass}} = \overline{e_L} \, \mathbf{M}_{\ell} \, e_R + \overline{\nu_L} \, \mathbf{M}_D \nu_R + \overline{\nu_R} \, \mathbf{M}_R s + \frac{1}{2} \overline{s^c} \, \mathbf{M}_s s + \text{H.c.}$

 \triangleright Effective neutrino mass matrix $(m_D, \mu_s \ll M)$:

$$
\mathbf{M}_{\text{eff}}=-\mathbf{M}^{*}_{D}\,(\mathbf{M}^{T}_{R})^{-1}\,\mathbf{M}_{s}\mathbf{M}^{-1}_{R}\mathbf{M}^{\dagger}_{D}\xrightarrow{\qquad \qquad }m_{\nu}\sim\mu_{s}\frac{m_{D}^{2}}{M^{2}}
$$

➢ Active-sterile mixing:

$$
\mathbf{U}_{\rm HI} \simeq \mathbf{V}_L^{\dagger} \big(0, \; \mathbf{M}_D (\mathbf{M}_R^{\dagger})^{-1} \big) \mathbf{U}_s \longrightarrow U_{\rm HI} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_s}}
$$

$$
\text{Type-I seesaw:}\hspace{1.0cm} m_{\nu} \sim \frac{m_D^2}{M} \; , \; U_{\rm HI} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{M}} \; \label{eq:proba}
$$

$$
(3 + nR + ns) \times (3 + nR + ns)
$$

$$
\mathbf{M} = \begin{pmatrix} 0 & \mathbf{M}_{D}^{*} & 0 \\ \mathbf{M}_{D}^{\dagger} & 0 & \mathbf{M}_{R} \\ 0 & \mathbf{M}_{R}^{T} & \mathbf{M}_{s} \end{pmatrix}
$$

- \triangleright The ISS is a low-scale neutrino mass generation mechanism
- \triangleright ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile neutrino mixing

$$
ISS(n_R, n_s) \longrightarrow ISS(2, 2)
$$

- Minimal Inverse Seesaw: \rightarrow One massless neutrino
	- \triangleright Neutrino data can be accommodated
	- \triangleright Still 17 parameters (in the M_s diagonal basis)

Abada & Lucente '14

Oscillation data and flavour symmetries

Minimal Inverse Seesaw ISS(2,2):

17 parameters vs 7 observables

$$
\theta_{12}\;,\;\theta_{23}\;,\;\theta_{13}\;,\Delta m^2_{21,31}\;\\\delta\;,\;\alpha
$$

de Salas et. al '20; Capozzi et. al '20; Esteban et. al '20

Oscillation data and flavour symmetries

Minimal Inverse Seesaw ISS(2,2):

17 parameters vs 7 observables

$$
\theta_{12} ~,~ \theta_{23} ~,~ \theta_{13} ~, \Delta m^2_{21,31} ~,~ \newline\delta ~,~ \alpha
$$

de Salas et. al '20; Capozzi et. al '20; Esteban et. al '20

Abelian flavour symmetries:

 \triangleright All mass terms generated dynamically

Mass matrices	M_{ℓ} , M_D
ψ_{α}	$S \equiv \Phi_a, S_a$
ψ_{β}	$(q_{\alpha} + q_{\beta} + q_S) = 0$

- \triangleright Impose texture zeros in the mass matrices reducing the number of parameters
- ➢ CPV from vacuum phases (SCPV)

$$
\sum_{\psi_{\beta}}^{\psi_{\alpha}} \cdots \cdots \cdots \otimes \langle \phi_{a}^{0} \rangle = v_{a} e^{i \theta_{a}}
$$

$$
\langle S_{a} \rangle = u_{a} e^{i \xi_{a}}
$$

Scalar content and Yukawa Lagrangian

- ➢ Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \triangleright Add two neutral complex scalar singlets to dynamically generate M_s and M_R .

$$
\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \phi_{1,2}^+ \\ v_{1,2} e^{i \theta_{1,2}} + \rho_{1,2} + i \eta_{1,2} \end{pmatrix} , \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2} e^{i \xi_{1,2}} + \rho_{3,4} + i \eta_{3,4} \right)
$$

Scalar content and Yukawa Lagrangian

- ➢ Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \triangleright Add two neutral complex scalar singlets to dynamically generate M_s and M_R .

$$
\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \phi_{1,2}^+ \\ v_{1,2} e^{i \theta_{1,2}} + \rho_{1,2} + i \eta_{1,2} \end{pmatrix} \,, \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2} e^{i \xi_{1,2}} + \rho_{3,4} + i \eta_{3,4} \right)
$$

$$
- \mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{D}^1 \tilde{\Phi}_1 + \mathbf{Y}_{D}^2 \tilde{\Phi}_2 \right) \nu_R
$$

$$
+ \frac{1}{2} \overline{s^c} \left(\mathbf{Y}_{s}^1 S_1 + \mathbf{Y}_{s}^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_{R}^1 S_2 + \mathbf{Y}_{R}^2 S_2^* \right) s + \text{H.c.}
$$

Scalar content and Yukawa Lagrangian

- \triangleright Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \triangleright Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$
\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \phi_{1,2}^+ \\ v_{1,2} e^{i \theta_{1,2}} + \rho_{1,2} + i \eta_{1,2} \end{pmatrix} , \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2} e^{i \xi_{1,2}} + \rho_{3,4} + i \eta_{3,4} \right)
$$

$$
\mathbf{Yukawa Lagrangian} = \mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{D}^1 \tilde{\Phi}_1 + \mathbf{Y}_{D}^2 \tilde{\Phi}_2 \right) \nu_R + \frac{1}{2} \overline{s^c} \left(\mathbf{Y}_{s}^1 S_1 + \mathbf{Y}_{s}^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_{R}^1 S_2 + \mathbf{Y}_{R}^2 S_2^* \right) s + \text{H.c.}
$$

Scalar potential

 $V(\Phi_a, S_a) = V_{sym.} + V_{soft}(\Phi_a, S_a)$

$$
V_{\text{soft}}(\Phi_a, S_a) = \mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mu_3^2 S_1^2 + \mu_4 |S_1|^2 S_1
$$

$$
+ \mu_5 |S_2|^2 S_2 + \text{H.c.}
$$

$$
\triangleright \text{ SCPV is achieved by: } \quad \theta, \xi_2 = 0 \text{, } \xi_1 = \arctan\left(\frac{\sqrt{32\mu_3^4 - \mu_4^2 u_1^2}}{\mu_4 u_1}\right)
$$

➢ Maximally-restrictive texture sets compatible with neutrino oscillation data that are realisable by Abelian symmetries:

Abelian flavour symmetries

 $(5_{1,I}^{\ell},\mathrm{T}_{45})$

 $\mathbb{Z}_2 \times U(1)_F$

 $(1,1)$

 $(0,-1)$

 $(0, 2)$

 $(0,0)$

 $(1,0)$

 $(0, 2)$

 $(0,-2)$

 $(1, -3)$

 $(0, 3)$

 $(0,-1)$

 $(0,1)$

 $(1,-1)$

 $(1,-1)$

 $(0,1)$

ONLY INTERESTING CASE

 $U(1)$

 $\overline{0}$

 $\overline{0}$

 $\boldsymbol{0}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\mathbf{1}$

 $\boldsymbol{0}$

 $\boldsymbol{0}$

Fields

 Φ_1

 Φ_2

 \mathcal{S}_1

 S_2

 ℓ_{e_L}

 ℓ_{μ_L}

 ℓ_{τ_L}

 $e_{\mathcal{R}}$

 μ_R

 τ_R

 ν_{R_1}

 ν_{R_2}

 $\sqrt{s_{1}}$

 $\sqrt{s_{2}}$

Mass matrices Yukawa decompositions

Common origin for Leptonic CPV

➢ Parameterisation of the charged lepton-mass matrix:

$$
5_1^{\ell}: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & m_{\ell_1}^2 & 0 \\ a_2 & \theta & a_4 \end{pmatrix} \; , \; \; \mathbf{H}_{\ell} = \begin{pmatrix} a_1^2 & 0 & a_1 a_4 \\ 0 & a_3^2 & 0 \\ a_1 a_4 & 0 & a_2^2 + a_4^2 \end{pmatrix} \; , \; \mathbf{V}_{L}' = \begin{pmatrix} c_L & 0 & s_L \\ 0 & 1 & 0 \\ -s_L & 0 & c_L \end{pmatrix} \quad \theta_L
$$

$$
5_1^e: \mathbf{V}_{L,R} = \mathbf{V}_{L,R}' \mathbf{P}_{12}, \quad 5_1^\mu: \mathbf{V}_{L,R} = \mathbf{V}_{L,R}', \quad 5_1^\tau: \mathbf{V}_{L,R} = \mathbf{V}_{L,R}' \mathbf{P}_{23},
$$

 $NO_{e,\mu,\tau}$, $IO_{e,\mu,\tau}$ 6 distinct cases to be analysed

Common origin for Leptonic CPV

➢ Parameterisation of the charged lepton-mass matrix:

 $NO_{e,\mu,\tau}$, $IO_{e,\mu,\tau}$

$$
5^{\ell}_1: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & \boxed{m_{\ell_1}^2} & 0 \\ a_2 & \theta & a_4 \end{pmatrix} \; , \; \; \mathbf{H}_{\ell} = \begin{pmatrix} a_1^2 & 0 & a_1a_4 \\ 0 & a_3^2 & 0 \\ a_1a_4 & 0 & a_2^2 + a_4^2 \end{pmatrix} \; , \; \mathbf{V}'_L = \begin{pmatrix} c_L & 0 & s_L \\ 0 & 1 & 0 \\ -s_L & 0 & c_L \end{pmatrix} \quad \theta_L
$$

$$
5^e_1: \mathbf{V}_{L,R}=\mathbf{V}_{L,R}'\mathbf{P}_{12}, \quad 5^{\mu}_1: \mathbf{V}_{L,R}=\mathbf{V}_{L,R}', \quad 5^{\tau}_1: \mathbf{V}_{L,R}=\mathbf{V}_{L,R}'\mathbf{P}_{23},
$$

6 distinct cases to be analysed

Real Yukawa couplings (CP is conserved at the Lagrangian level)
\n
$$
\mathbf{Y}_D^1 = \begin{pmatrix} b_1 & 0 \\ 0 & 0 \\ 0 & b_2 \end{pmatrix}, \ \mathbf{Y}_D^2 = \begin{pmatrix} 0 & b_3 \\ b_4 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_R = \begin{pmatrix} 0 & d_2 \\ d_1 & 0 \end{pmatrix}, \ \mathbf{Y}_s^1 = \begin{pmatrix} f_2 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_s^2 = \begin{pmatrix} 0 & 0 \\ 0 & f_1 \end{pmatrix}
$$

VEV configuration:

$$
\langle \phi_1^0 \rangle = v \cos \beta
$$

$$
\langle \phi_2^0 \rangle = v \sin \beta
$$

$$
\langle S_1 \rangle = u_1 e^{i\xi}, \langle S_2 \rangle = u_2
$$

$$
\langle \phi_2^0 \rangle = v \sin \beta
$$

$$
\langle \phi_1^0 \rangle = u_1 e^{i\xi}, \langle S_2 \rangle = u_2
$$

$$
\langle \phi_1^0 \rangle = u_1 e^{i\xi}, \langle S_2 \rangle = u_2
$$

Correlation between low-energy observables

 \triangleright Effective neutrino mass matrix:

 $\mathbf{V}^{\dagger}_L \mathbf{M}_{\text{eff}} \mathbf{V}_L$

$$
\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & z e^{2i\xi} \\ y & x & 0 \\ z e^{2i\xi} & 0 & w e^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos \theta_L & 0 & \sin \theta_L \\ 0 & 1 & 0 \\ -\sin \theta_L & 0 & \cos \theta_L \end{pmatrix} \begin{pmatrix} 5^e_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5^{\mu}_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5^{\tau}_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{pmatrix}
$$

$$
z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \ x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}
$$

Correlation between low-energy observables

 \triangleright Effective neutrino mass matrix:

 $\mathbf{V}^\dagger_L \mathbf{M}_{\text{eff}} \mathbf{V}_L$

$$
\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & z e^{2i\xi} \\ y & x & 0 \\ z e^{2i\xi} & 0 & w e^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos \theta_L & 0 & \sin \theta_L \\ 0 & 1 & 0 \\ -\sin \theta_L & 0 & \cos \theta_L \end{pmatrix} \begin{pmatrix} 5^e_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5^{\mu}_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5^{\tau}_1 : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{pmatrix}
$$

$$
z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \ x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}
$$

 \triangleright The effective light neutrino mass matrix is written solely in terms of 6 effective parameters:

$$
(x, y, z, w, \theta_L, \xi) \longrightarrow O_i \equiv (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{ij}, \delta, \alpha)
$$

\nNO : $M_{ij} = \left[\mathbf{U}^{\prime *} \text{diag} \left(0, \sqrt{\Delta m_{21}^2}, \sqrt{\Delta m_{31}^2} \right) \mathbf{U}^{\prime \dagger} \right]_{ij}$
\nIO : $M_{ij} = \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}$
\n $D_{ij} = M_{ii} M_{jj} - M_{ij}^2$
\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}
$$

\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}
$$

\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}
$$

\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}
$$

\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}^{\prime \dagger} \right]_{ij}
$$

\n
$$
= \left[\mathbf{U}^{\prime *} \text{diag} \left(\sqrt{\Delta m_{
$$

Leptonic CP violation

➢ Strong correlation between α and δ,

Leptonic CP violation

➢ No Dirac CPV implies no Majorana CPV,

as in Branco, Felipe, Joaquim, Serôdio '12

Leptonic CP violation

- \triangleright A measurement of δ in the intervals [45^o, 135^o] and [225^o, 315^o] would exclude the NO_{μ} and NO_{τ} cases,
- \triangleright $\beta \beta_{0v}$ analysis done in the paper (no time to discuss here).

Heavy-light mixing relations

$$
\sum_{\text{neutral current}} \mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_f} \mathbf{B}_{\alpha j} \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.}
$$
\n
$$
\sum_{\text{interactions}} \mathcal{L}_{Z} = \frac{g}{4c_{W}} Z_{\mu} \sum_{i,j=1}^{n_f} \overline{\nu_{i}} \gamma^{\mu} \left(\mathcal{C}_{ij} P_{L} - \mathcal{C}_{ij}^{*} P_{R} \right) \nu_{j},
$$
\n
$$
\mathcal{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{B}_{\alpha i}^{*} \mathbf{B}_{\alpha j} \quad \text{www}
$$
\n
$$
\sum_{\nu_{j}} \frac{\mathbf{B}_{e4}}{\mathbf{B}_{\mu 4}} \simeq \frac{\mathbf{B}_{e5}}{\mathbf{B}_{\mu 5}} \simeq \frac{x}{y c_{L}},
$$
\n
$$
\frac{\mathbf{B}_{\tau 4}}{\mathbf{B}_{\mu 4}} \simeq \frac{\mathbf{B}_{\tau 5}}{\mathbf{B}_{\mu 5}} \simeq \tan \theta_{L},
$$
\n
$$
\frac{\mathbf{B}_{\mu 6}}{\mathbf{B}_{\tau 6}} \simeq \frac{\mathbf{B}_{\mu 7}}{\mathbf{B}_{\tau 7}} \simeq \frac{z - w \tan \theta_{L}}{w + z \tan \theta_{L}},
$$
\n
$$
\mathbf{B}_{e6} \simeq \mathbf{B}_{e7} \simeq 0
$$

Heavy-light mixing relations

$$
\sum_{\text{neutral current}} \mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_f} \mathbf{B}_{\alpha j} \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.}
$$

$$
\frac{\mathbf{B}_{e4}}{\mathbf{B}_{\mu 4}} \simeq \frac{\mathbf{B}_{e5}}{\mathbf{B}_{\mu 5}} \simeq \frac{x}{yc_L} , \; \frac{\mathbf{B}_{\tau 4}}{\mathbf{B}_{\mu 4}} \simeq \frac{\mathbf{B}_{\tau 5}}{\mathbf{B}_{\mu 5}} \simeq \tan \theta_L , \; \frac{\mathbf{B}_{\mu 6}}{\mathbf{B}_{\tau 6}} \simeq \frac{\mathbf{B}_{\mu 7}}{\mathbf{B}_{\tau 7}} \simeq \frac{z - w \tan \theta_L}{w + z \tan \theta_L} , \, \mathbf{B}_{e6} \simeq \mathbf{B}_{e7} \simeq 0
$$

➢ Numerical estimates

$$
\triangleright
$$
 The **B**_{*ai*} ($\alpha = e, \mu, \tau$) ($i = 4, ..., 7$)
are related to each other;

➢ The relations are expressed solely in terms of the low-energy neutrino observables;

➢ Due to the flavour symmetries the heavy-light mixing parameters are not independent.

Relations among cLFV processes (no time to discuss here)

Charged lepton flavour violation (cLFV)

➢ Muon cLFV: strongest current constraints and future lowest sensitivities

cLFV in the ISS(2,2) with Abelian symmetries

- \triangleright For NO, almost the whole parameter space will be scrutinized by future $\mu-e$ conversion experiments (Mu2e, COMET, PRISM/PRIME);
- \triangleright For IO, the prospects are less optimistic.

Constraints on heavy sterile neutrinos

- ≻ Current data implies an upper bound $V_{eN}^2 \sim 10^{-6} 10^{-5}$;
- \triangleright Future probes will be sensitive to much smaller mixings. Indirect LFV experiments fully complementary to other direct searches.

Constraints on heavy sterile neutrinos

 \triangleright EWPD is less constraining in the IO case;

≻ Future cLFV probes will be sensitive to $V_{eN}^2 \sim 10^{-7}$.

Conclusion

- \triangleright Comprehensive study of the minimal inverse seesaw model constrained by Abelian flavour symmetries with all mass terms generated via SSB;
- \triangleright Majorana and Dirac-type CP violation are related;
- ➢ Relations among LFV parameters in our framework provide a very constrained setup for phenomenological studies;
- \triangleright Constraining power of cLFV processes in the model's parameter space;
- ➢ Alternative probes such as beam-dump, hadron-collider, linear-collider, displacedvertex experiments as well as EWPD.

Analysed in paper: Impact of radiative corrections on neutrino masses, neutrinoless double beta decay, relations among tau and muon cLFV decays, …

Thank you!