Sterile neutrinos with inverse-seesaw and Abelian flavour symmetries

Henrique B. Câmara

Departamento de Física and CFTP, Instituto Superior Técnico, Lisboa

Based on work in collaboration with R.G. Felipe & F.R. Joaquim

arXiv:2012.04557[hep-ph]

DOI:10.1007/JHEP05(2021)021

Contact e-mail: henrique.b.camara@tecnico.ulisboa.pt

Workshop on the Standard Model and Beyond – Corfu Summer Institute, 4 September 2021

Inverse-seesaw (ISS)

 $\mathrm{ISS}(n_R,n_s)$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

$$\blacktriangleright \text{ Sterile neutrino fields:} \qquad \nu_{Ri} \ (i = 1, ..., n_R), \ s_i \ (i = 1, ..., n_s) \qquad (3 + n_R + n_s) \times (3 + n_R + n_s) \\ -\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \ \mathbf{M}_{\ell} \ e_R + \overline{\nu_L} \ \mathbf{M}_D \nu_R + \overline{\nu_R} \ \mathbf{M}_R s + \frac{1}{2} \overline{s^c} \ \mathbf{M}_s s + \text{H.c.} \qquad \blacksquare \qquad \bigstar \qquad \mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^\dagger & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}$$

Inverse-seesaw (ISS)

 $\mathrm{ISS}(n_R,n_s)$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

 \blacktriangleright Sterile neutrino fields: $u_{Ri} \; (i=1,...,n_R), \; s_i \; (i=1,...,n_s)$

 $-\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \,\mathbf{M}_\ell \,e_R + \overline{\nu_L} \,\mathbf{M}_D \nu_R + \overline{\nu_R} \,\mathbf{M}_R s + \frac{1}{2} \overline{s^c} \,\mathbf{M}_s s + \text{H.c.}$

Effective neutrino mass matrix (m_D , $\mu_s \ll M$):

Active-sterile mixing:

$$\mathbf{U}_{\mathrm{Hl}} \simeq \mathbf{V}_{L}^{\dagger} \left(0, \ \mathbf{M}_{D} (\mathbf{M}_{R}^{\dagger})^{-1} \right) \mathbf{U}_{s} \longrightarrow U_{\mathrm{Hl}} \sim \frac{m_{D}}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_{s}}}$$

Type-I seesaw:
$$m_{
u} \sim rac{m_D^2}{M} \;,\; U_{
m Hl} \sim rac{m_D}{M} \sim \sqrt{rac{m_{
u}}{M}}$$

$$(3 + n_R + n_s) \times (3 + n_R + n_s)$$
$$\longrightarrow \mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^\dagger & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}$$

- The ISS is a low-scale neutrino mass generation mechanism
- ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile neutrino mixing

Inverse-seesaw (ISS)

 $\mathrm{ISS}(n_R,n_s)$ Mohapatra; Mohapatra & Valle '86; Gonzalez-Garcia & Valle '89

 \blacktriangleright Sterile neutrino fields: $u_{Ri} \; (i=1,...,n_R), \; s_i \; (i=1,...,n_s)$

 $-\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \,\mathbf{M}_{\ell} \,e_R + \overline{\nu_L} \,\mathbf{M}_D \nu_R + \overline{\nu_R} \,\mathbf{M}_R s + \frac{1}{2} \overline{s^c} \,\mathbf{M}_s s + \text{H.c.}$

Effective neutrino mass matrix (m_D , $\mu_s \ll M$):

Active-sterile mixing:

$$\mathbf{U}_{\mathrm{Hl}} \simeq \mathbf{V}_{L}^{\dagger} \left(0, \ \mathbf{M}_{D} (\mathbf{M}_{R}^{\dagger})^{-1} \right) \mathbf{U}_{s} \longrightarrow U_{\mathrm{Hl}} \sim \frac{m_{D}}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_{s}}}$$

Type-I seesaw:
$$m_{\nu} \sim \frac{m_D^2}{M} \ , \ U_{\rm Hl} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{M}}$$

$$(3 + n_R + n_s) \times (3 + n_R + n_s)$$
$$\implies \mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^\dagger & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}$$

- The ISS is a low-scale neutrino mass generation mechanism
- ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile neutrino mixing

Minimal Inverse Seesaw:

$$ISS(n_R, n_s) \longrightarrow ISS(2, 2)$$

- One massless neutrino
- Neutrino data can be accommodated
- Still 17 parameters (in the M_s diagonal basis)

Henrique B. Câmara – CORFU 2021

Abada & Lucente '14

Oscillation data and flavour symmetries

Minimal Inverse Seesaw ISS(2,2):

17 parameters vs 7 observables

Parameter	Best Fit $\pm 1\sigma$	3σ range
$ heta_{12}(^{\circ})$	34.3 ± 1.0	$31.4 \rightarrow 37.4$
$ heta_{23}(^{\circ})[\mathrm{NO}]$	$48.79^{+0.93}_{-1.25}$	$41.63 \rightarrow 51.32$
$ heta_{23}(^\circ)[\mathrm{IO}]$	$48.79^{+1.04}_{-1.30}$	$41.88 \rightarrow 51.30$
$\theta_{13}(^{\circ})[\mathrm{NO}]$	$8.58\substack{+0.11 \\ -0.15}$	$8.16 \rightarrow 8.94$
$ heta_{13}(^{\circ})[\mathrm{IO}]$	$8.63\substack{+0.11 \\ -0.15}$	$8.21 \rightarrow 8.99$
$\delta(^{\circ})[\mathrm{NO}]$	216^{+41}_{-25}	$144 \rightarrow 360$
$\delta(^{\circ})[\mathrm{IO}]$	277^{+23}_{-24}	$205 \rightarrow 342$
$\Delta m_{21}^2 \left(\times 10^{-5} \ {\rm eV}^2 \right)$	$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \text{ eV}^2\right) [\text{NO}]$	$2.56\substack{+0.03 \\ -0.04}$	$2.46 \rightarrow 2.65$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \text{ eV}^2\right) [\text{IO}]$	2.46 ± 0.03	$2.37 \rightarrow 2.55$

de Salas et. al '20; Capozzi et. al '20; Esteban et. al '20

Oscillation data and flavour symmetries

Minimal Inverse Seesaw ISS(2,2):

17 parameters vs 7 observables

Parameter	Best Fit $\pm 1\sigma$	3σ range
$ heta_{12}(^\circ)$	34.3 ± 1.0	$31.4 \rightarrow 37.4$
$ heta_{23}(^{\circ})[\mathrm{NO}]$	$48.79_{-1.25}^{+0.93}$	$41.63 \rightarrow 51.32$
$ heta_{23}(^{\circ})[\mathrm{IO}]$	$48.79^{+1.04}_{-1.30}$	$41.88 \rightarrow 51.30$
$\theta_{13}(^{\circ})[\mathrm{NO}]$	$8.58\substack{+0.11\\-0.15}$	$8.16 \rightarrow 8.94$
$ heta_{13}(^{\circ})[\mathrm{IO}]$	$8.63\substack{+0.11 \\ -0.15}$	$8.21 \rightarrow 8.99$
$\delta(^{\circ})[\mathrm{NO}]$	216^{+41}_{-25}	$144 \rightarrow 360$
$\delta(^{\circ})[\mathrm{IO}]$	277^{+23}_{-24}	$205 \rightarrow 342$
$\Delta m_{21}^2 \left(\times 10^{-5} \ {\rm eV}^2 \right)$	$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \text{ eV}^2\right) [\text{NO}]$	$2.56\substack{+0.03 \\ -0.04}$	$2.46 \rightarrow 2.65$
$\left \Delta m_{31}^2\right \left(\times 10^{-3} \text{ eV}^2\right) [\text{IO}]$	2.46 ± 0.03	$2.37 \rightarrow 2.55$

de Salas et. al '20; Capozzi et. al '20; Esteban et. al '20

Abelian flavour symmetries:

All mass terms generated dynamically

Mass matrices
$$\mathbf{M}_{\ell}$$
 , \mathbf{M}_{D}
 \mathbf{M}_{R} , \mathbf{M}_{s}
 ψ_{α}
 ψ_{β}
 $(q_{\alpha} + q_{\beta} + q_{S}) =$

- Impose texture zeros in the mass matrices reducing the number of parameters
- CPV from vacuum phases (SCPV)

$$\begin{array}{c} \psi_{\alpha} \\ \downarrow \\ \psi_{\beta} \end{array} & \langle \phi_{a}^{0} \rangle = v_{a} e^{i\theta_{a}} \\ \langle S_{a} \rangle = u_{a} e^{i\xi_{a}}
\end{array}$$

()

Scalar content and Yukawa Lagrangian

- Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \blacktriangleright Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2}e^{i\theta_{1,2}} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}, \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2}e^{i\xi_{1,2}} + \rho_{3,4} + i\eta_{3,4} \right)$$

Scalar content and Yukawa Lagrangian

- Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \blacktriangleright Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2}e^{i\theta_{1,2}} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix} , \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2}e^{i\xi_{1,2}} + \rho_{3,4} + i\eta_{3,4} \right)$$

$$\begin{aligned} -\mathcal{L}_{\text{Yuk.}} &= \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R \\ &+ \frac{1}{2} \, \overline{s^c} \left(\mathbf{Y}_s^1 S_1 + \mathbf{Y}_s^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_R^1 S_2 + \mathbf{Y}_R^2 S_2^* \right) s + \text{H.c.} \end{aligned}$$

Scalar content and Yukawa Lagrangian

- Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- \blacktriangleright Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2}e^{i\theta_{1,2}} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}, \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2}e^{i\xi_{1,2}} + \rho_{3,4} + i\eta_{3,4} \right)$$

$$\begin{aligned} -\mathcal{L}_{\text{Yuk.}} &= \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R \\ &+ \frac{1}{2} \, \overline{s^c} \left(\mathbf{Y}_s^1 S_1 + \mathbf{Y}_s^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_R^1 S_2 + \mathbf{Y}_R^2 S_2^* \right) s + \text{H.c.} \end{aligned}$$

Scalar potential

 $V(\Phi_a, S_a) = V_{\text{sym.}} + V_{\text{soft}}(\Phi_a, S_a)$

$$V_{\text{soft}}(\Phi_a, S_a) = \mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mu_3^2 S_1^2 + \mu_4 |S_1|^2 S_1 + \mu_5 |S_2|^2 S_2 + \text{H.c.}$$

SCPV is achieved by:
$$\theta, \xi_2 = 0, \xi_1 = \arctan\left(\frac{\sqrt{32\mu_3^4 - \mu_4^2 u_1^2}}{\mu_4 u_1}\right)$$

Maximally-restrictive texture sets compatible with neutrino oscillation data that are realisable by Abelian symmetries:

		-	/		1	
		$(5_{1,I}^{\ell}, T_{45})$	$(4_3^\ell, T_{124})$	$(4_3^\ell, T_{456})$	$(4_3^\ell, T_{136,I})$	$(4_3^\ell, T_{146,I})$
Fields	$\mathrm{U}(1)$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_{\mathrm{F}}$	$\mathbb{Z}_4 imes \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_4 \times \mathrm{U}(1)_F$
Φ_1	0	(1, 1)	(0, -5)	(1, 1)	(1, 2)	(0,1)
Φ_2	0	(0,-1)	(1, -3)	(0,-1)	(0,1)	(3,0)
S_1	0	(0,2)	(0, -2)	(0,-2)	(0, -2)	(0, -2)
S_2	1	(0,0)	(0,0)	(1,0)	(0,0)	(0,0)
ℓ_{e_L}	1	(1,0)	(0,0)	(0,0)	(2,0)	(2, 0)
ℓ_{μ_L}	1	(0,2)	(1,2)	(1,-2)	(1, -1)	(1, -1)
ℓ_{τ_L}	1	(0,-2)	(0,4)	(0, -4)	(0,-2)	(0,-2)
e_R	1	(1, -3)	(0,9)	(1, -5)	(3, -4)	(0, -3)
μ_R	1	(0,3)	(1,7)	(0,-3)	(0, -3)	(1,-2)
$ au_R$	1	(0,-1)	(0,5)	(1, -1)	(1, -2)	(2, -1)
$ u_{R_1}$	1	(0,1)	(0,-1)	(0,-1)	(0, -1)	(0,-1)
$ u_{R_2}$	1	(1, -1)	(1, 1)	(1, 1)	(2,1)	(2,1)
s_1	0	(1,-1)	(1,1)	(0,1)	(2,1)	(2,1)
s_2	0	(0,1)	(0, -1)	(1, -1)	(0, -1)	(0, -1)

 $\mathbf{G}_{\mathrm{F}} = \mathrm{U}(1) \times \mathbb{Z}_n \times \mathrm{U}(1)_{\mathrm{F}}, \ n = 2, 4$

Abelian flavour symmetries

ONLY INTERESTING CASE

$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R$	
$+\frac{1}{2}\overline{s^{c}}\left(\mathbf{Y}_{s}^{1}S_{1}+\mathbf{Y}_{s}^{2}S_{1}^{*}\right)s+\overline{\nu_{R}}\left(\mathbf{Y}_{R}^{1}S_{2}+\mathbf{Y}_{R}^{2}S_{2}^{*}\right)s+\mathrm{H.c}$	

Mass matrices Yukawa decompositions

\mathbf{M}_ℓ	\mathbf{Y}^1_ℓ	\mathbf{Y}_ℓ^2	\mathbf{M}_R \mathbf{Y}_R
$5_{1,\mathrm{I}}^{\ell}$	$\begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$	$\mathbf{T}_{14} \begin{pmatrix} 0 & \times \\ \times & 0 \end{pmatrix}$
\mathbf{M}_D	\mathbf{Y}_D^1	\mathbf{Y}_D^2	\mathbf{M}_{a} \mathbf{Y}^{1} \mathbf{Y}^{2}
T_{45}	$\begin{pmatrix} \times & 0 \\ 0 & 0 \\ 0 & \times \end{pmatrix}$	$\begin{pmatrix} 0 & \times \\ \times & 0 \\ 0 & 0 \end{pmatrix}$	$T_{23} \begin{pmatrix} \times & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \times \end{pmatrix}$

		$(5_{1,I}^{\ell}, T_{45})$
Fields	U(1)	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$
Φ_1	0	(1, 1)
Φ_2	0	(0, -1)
S_1	0	(0,2)
S_2	1	(0,0)
ℓ_{e_L}	1	(1,0)
ℓ_{μ_L}	1	(0,2)
$\ell_{ au_L}$	1	(0, -2)
e_R	1	(1, -3)
μ_R	1	(0,3)
$ au_R$	1	(0, -1)
$ u_{R_1}$	1	(0,1)
$ u_{R_2}$	1	(1, -1)
s_1	0	(1, -1)
s_2	0	(0,1)

Common origin for Leptonic CPV

Parameterisation of the charged lepton-mass matrix:

$$5_{1}^{\ell}: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_{1} \\ 0 & m_{\ell_{1}}^{2} & 0 \\ a_{2} & \theta & a_{4} \end{pmatrix} \quad , \quad \mathbf{H}_{\ell} = \begin{pmatrix} a_{1}^{2} & 0 & a_{1}a_{4} \\ 0 & a_{3}^{2} & 0 \\ a_{1}a_{4} & 0 & a_{2}^{2} + a_{4}^{2} \end{pmatrix} \quad , \quad \mathbf{V}_{L}' = \begin{pmatrix} c_{L} & 0 & s_{L} \\ 0 & 1 & 0 \\ -s_{L} & 0 & c_{L} \end{pmatrix} \quad \theta_{L}$$

$$5_1^e : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}\mathbf{P}_{12}, \quad 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}, \quad 5_1^\tau : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}\mathbf{P}_{23},$$

 $NO_{e,\mu,\tau}$, $IO_{e,\mu,\tau}$ 6 distinct cases to be analysed

Common origin for Leptonic CPV

Parameterisation of the charged lepton-mass matrix:

 $\mathsf{NO}_{e,\mu,\tau}$, $\mathsf{IO}_{e,\mu,\tau}$

$$5_1^{\ell}: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & m_{\ell_1}^2 & 0 \\ a_2 & \theta & a_4 \end{pmatrix} , \quad \mathbf{H}_{\ell} = \begin{pmatrix} a_1^2 & 0 & a_1 a_4 \\ 0 & a_3^2 & 0 \\ a_1 a_4 & 0 & a_2^2 + a_4^2 \end{pmatrix} , \quad \mathbf{V}_L' = \begin{pmatrix} c_L & 0 & s_L \\ 0 & 1 & 0 \\ -s_L & 0 & c_L \end{pmatrix} \quad \theta_L$$

$$5_1^e: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12}, \quad 5_1^\mu: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}, \quad 5_1^\tau: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23},$$

6 distinct cases to be analysed

$$\mathbf{Y}_{D}^{1} = \begin{pmatrix} b_{1} & 0 \\ 0 & 0 \\ 0 & b_{2} \end{pmatrix} , \ \mathbf{Y}_{D}^{2} = \begin{pmatrix} 0 & b_{3} \\ b_{4} & 0 \\ 0 & 0 \end{pmatrix} , \ \mathbf{Y}_{R} = \begin{pmatrix} 0 & d_{2} \\ d_{1} & 0 \end{pmatrix} , \ \mathbf{Y}_{s}^{1} = \begin{pmatrix} f_{2} & 0 \\ 0 & 0 \end{pmatrix} , \ \mathbf{Y}_{s}^{2} = \begin{pmatrix} 0 & 0 \\ 0 & f_{1} \end{pmatrix}$$

VEV configuration:

Correlation between low-energy observables

Effective neutrino mass matrix:

 $\mathbf{V}_L^\dagger \mathbf{M}_{ ext{eff}} \mathbf{V}_L$

$$\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & ze^{2i\xi} \\ y & x & 0 \\ ze^{2i\xi} & 0 & we^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos\theta_L & 0 & \sin\theta_L \\ 0 & 1 & 0 \\ -\sin\theta_L & 0 & \cos\theta_L \end{pmatrix} \begin{bmatrix} 5_1^e : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5_1^\tau : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{bmatrix}$$

$$z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \ x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}$$

Correlation between low-energy observables

Effective neutrino mass matrix:

 $\mathbf{V}_L^\dagger \mathbf{M}_{ ext{eff}} \mathbf{V}_L$

$$\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & ze^{2i\xi} \\ y & x & 0 \\ ze^{2i\xi} & 0 & we^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos\theta_L & 0 & \sin\theta_L \\ 0 & 1 & 0 \\ -\sin\theta_L & 0 & \cos\theta_L \end{pmatrix} \begin{bmatrix} 5_1^e : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5_1^\tau : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{bmatrix}$$

$$z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \ x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}$$

The effective light neutrino mass matrix is written solely in terms of 6 effective parameters:

$$(x, y, z, w, \theta_L, \xi) \longrightarrow \mathcal{O}_i \equiv (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{ij}, \delta, \alpha)$$

$$NO: M_{ij} = \left[\mathbf{U}'^* \operatorname{diag} \left(0, \sqrt{\Delta m_{21}^2}, \sqrt{\Delta m_{31}^2} \right) \mathbf{U'}^\dagger \right]_{ij}$$

$$IO: M_{ij} = \left[\mathbf{U}'^* \operatorname{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2} + \Delta m_{31}^2, 0 \right) \mathbf{U'}^\dagger \right]_{ij}$$

$$D_{ij} = M_{ii}M_{jj} - M_{ij}^2$$

$$Low-energy relations:$$

$$5_1^e: \arg \left[M_{11}^{*2}M_{13}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

$$5_1^{\mu}: \arg \left[M_{12}^{*2}M_{23}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

$$5_1^{\tau}: \arg \left[M_{13}^{*2}M_{33}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

Leptonic CP violation

> Strong correlation between α and δ ,

Leptonic CP violation

- > Strong correlation between α and δ ,
- No Dirac CPV implies no Majorana CPV,

as in Branco, Felipe, Joaquim, Serôdio '12

Leptonic CP violation

- > A measurement of δ in the intervals [45°, 135°] and [225°, 315°] would exclude the NO_µ and NO₇ cases,
- > $\beta \beta_{0v}$ analysis done in the paper (no time to discuss here).

Heavy-light mixing relations

$$\begin{array}{l} \blacktriangleright \quad \text{Charged and} \\ \text{neutral current} \\ \text{interactions} \end{array} \qquad \mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_{f}} \mathbf{B}_{\alpha j} \ \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.} \qquad \mathbf{W}^{\pm} \qquad \nu_{j} \\ \mathcal{L}_{Z} = \frac{g}{4c_{W}} Z_{\mu} \sum_{i,j=1}^{n_{f}} \ \overline{\nu_{i}} \gamma^{\mu} \left(\mathcal{C}_{ij} P_{L} - \mathcal{C}_{ij}^{*} P_{R} \right) \nu_{j} , \ \mathcal{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{B}_{\alpha i}^{*} \mathbf{B}_{\alpha j} \qquad \mathbf{W}^{\pm} \qquad \nu_{j} \\ \mathbf{W}^{\pm} \qquad \mathbf$$

Heavy-light mixing relations

$$\mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_{f}} \mathbf{B}_{\alpha j} \ \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.} \quad \mathbf{W}^{\pm} \qquad \nu_{j} \\ \mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_{f}} \mathbf{B}_{\alpha j} \ \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.} \quad \mathbf{W}^{\pm} \qquad e_{\alpha} \\ \mathcal{L}_{Z} = \frac{g}{4c_{W}} Z_{\mu} \sum_{i,j=1}^{n_{f}} \overline{\nu_{i}} \gamma^{\mu} \left(\mathcal{C}_{ij} P_{L} - \mathcal{C}_{ij}^{*} P_{R} \right) \nu_{j} , \ \mathcal{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{B}_{\alpha i}^{*} \mathbf{B}_{\alpha j} \qquad \mathbf{V}_{j} \\ \mathcal{V}_{j} \qquad \mathbf{V}_{j}$$

$$\frac{\mathbf{B}_{e4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{e5}}{\mathbf{B}_{\mu5}} \simeq \frac{x}{yc_L} , \ \frac{\mathbf{B}_{\tau4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{\tau5}}{\mathbf{B}_{\mu5}} \simeq \tan\theta_L , \ \frac{\mathbf{B}_{\mu6}}{\mathbf{B}_{\tau6}} \simeq \frac{\mathbf{B}_{\mu7}}{\mathbf{B}_{\tau7}} \simeq \frac{z - w \tan\theta_L}{w + z \tan\theta_L} , \ \mathbf{B}_{e6} \simeq \mathbf{B}_{e7} \simeq 0$$

Numerical estimates

	NO_{e}	NO_{μ}	NO_{τ}	IO_e	IO_{μ}	IO_{τ}
$\mathbf{B}_{e4}/\mathbf{B}_{\mu4}\simeq\mathbf{B}_{e5}/\mathbf{B}_{\mu5}$	0.21	0.17	0.17	2.73	0.21	0.41
$\mathbf{B}_{ au 4}/\mathbf{B}_{\mu 4} \simeq \mathbf{B}_{ au 5}/\mathbf{B}_{\mu 5}$	0.27	0.88	0.87	0.51	1.09	1.24
$\mathbf{B}_{ au 4}/\mathbf{B}_{e4} \simeq \mathbf{B}_{ au 5}/\mathbf{B}_{e5}$	1.27	5.07	5.24	0.19	5.33	5.02
$\mathbf{B}_{e6}/\mathbf{B}_{\mu 6}\simeq \mathbf{B}_{e7}/\mathbf{B}_{\mu 7}$	0	_	0.36	0	_	4.96
$\mathbf{B}_{ au 6}/\mathbf{B}_{\mu 6}\simeq \mathbf{B}_{ au 7}/\mathbf{B}_{\mu 7}$	0.61	_	0	1.14	_	0
$\mathbf{B}_{ au 6}/\mathbf{B}_{e6}\simeq \mathbf{B}_{ au 7}/\mathbf{B}_{e7}$	_	1.64	0	_	0.23	0

The **B**_{$$\alpha i$$} ($\alpha = e, \mu, \tau$) ($i = 4, ..., 7$)
are related to each other;

Due to the flavour symmetries the heavy-light mixing parameters are not independent.

Relations among cLFV processes (no time to discuss here)

Charged lepton flavour violation (cLFV)

cLFV process	Present limit $(90\% \text{ CL})$	Future sensitivity
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \text{ (MEG)}$	$6 \times 10^{-14} \text{ (MEG II)}$
$BR(\tau \to e\gamma)$	3.3×10^{-8} (BaBar)	3×10^{-9} (Belle II)
$BR(\tau \to \mu \gamma)$	$4.4 \times 10^{-8} $ (BaBar)	10^{-9} (Belle II)
$\mathrm{BR}(\mu^- \to e^- e^+ e^-)$	1.0×10^{-12} (SINDRUM)	10^{-16} (Mu3e)
$BR(\tau^- \to e^- e^+ e^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
${\rm BR}(\tau^- \to e^- \mu^+ \mu^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-)$	1.7×10^{-8} (Belle)	3×10^{-10} (Belle II)
${\rm BR}(\tau^- \to \mu^- e^+ e^-)$	1.8×10^{-8} (Belle)	3×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to \mu^+ e^- e^-)$	1.5×10^{-8} (Belle)	3×10^{-10} (Belle II)
${\rm BR}(\tau^- \to \mu^- \mu^+ \mu^-)$	2.1×10^{-8} (Belle)	4×10^{-10} (Belle II)
$CR(\mu - e, Al)$	_	$3 \times 10^{-17} $ (Mu2e)
		$10^{-15} - 10^{-17}$ (COMET I-II)
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II)	10^{-18} (PRISM/PRIME)
$CR(\mu - e, Au)$	7×10^{-13} (SINDRUM II)	_
$CR(\mu - e, Pb)$	4.6×10^{-11} (SINDRUM II)	_

Muon cLFV: strongest current constraints and future lowest sensitivities

cLFV in the ISS(2,2) with Abelian symmetries

- > For NO, almost the whole parameter space will be scrutinized by future μe conversion experiments (Mu2e, COMET, PRISM/PRIME);
- For IO, the prospects are less optimistic.

Constraints on heavy sterile neutrinos

> Current data implies an upper bound $V_{eN}^2 \sim 10^{-6} - 10^{-5}$;

Future probes will be sensitive to much smaller mixings. Indirect LFV experiments fully complementary to other direct searches.

Constraints on heavy sterile neutrinos

EWPD is less constraining in the IO case;

> Future cLFV probes will be sensitive to $V_{eN}^2 \sim 10^{-7}$.

Conclusion

- Comprehensive study of the minimal inverse seesaw model constrained by Abelian flavour symmetries with all mass terms generated via SSB;
- Majorana and Dirac-type CP violation are related;
- Relations among LFV parameters in our framework provide a very constrained setup for phenomenological studies;
- Constraining power of cLFV processes in the model's parameter space;
- Alternative probes such as beam-dump, hadron-collider, linear-collider, displacedvertex experiments as well as EWPD.

Analysed in paper: Impact of radiative corrections on neutrino masses, neutrinoless double beta decay, relations among tau and muon cLFV decays, ...

Thank you!