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How easy/difficult is for the Axion  
to get mass from UV physics?
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Axion mass dependence with the UV

Not to spoil the solution to the strong CP problem:

Mass from the anomaly:
a
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Figure 1: ⇠ as a function of R/⇢.

instanton calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D
theory admits the following instanton solution in Euclidean space:

A

a
µ(x, y) = A

(I)a
µ (x), A

a
5(x, y) = 0, (5)

where

A

(I)a
µ (x) =

2 ⌘

a
µ⌫(x � x0)⌫

(x � x0)2 + ⇢

2
, (6)

is the 4D instanton configuration [20] in the regular gauge with center x0 and size ⇢. The
tensors ⌘

a
µ⌫ are the group-theoretic ’t Hooft eta-symbols [23] and a denotes the gauge

isospin index. The 5D instanton solution (5) can be simply thought of as wrapping the
4D solution (6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a
multi-instanton configuration with winding numbers (1, 1, . . . , 1). Importantly, it does not
appear to be the continuum limit of the 4D instantons used in the moose model of [24] that
corresponds to the combination of (1, 0, 0 . . . , 0)+(0, 1, 0 . . . , 0)+(0, 0, 1 . . . , 0)+ . . . . This
latter configuration would correspond to instantons localized in the bulk i.e. Aµ(x, y) =

A

(I)
µ (x)�(y). However this is not a solution of the 5D equations of motion, and therefore

the 4D moose model of [24] does not reconstruct to a 5D theory.
The 5D instanton solution (5) minimizes the action (1) to give (ignoring for now the

axion terms)

S

(I)
5 =

8⇡3
R

g

2
5

=
2⇡

↵s
, (7)

where we have used the relation (3) with L = ⇡R. To obtain the contribution of the
instanton to the partition function we must also consider the fluctuations of the 5D
gauge fields about the instanton solution (5). This means not only including the gluon
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Including fermions:
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where

Duifii' =8 ui)' —ai7, A ir'g'. (8)

I will eall the SU(2) index i "color" and the index
t =1,...,N "flavor. " The vector currents
Jq" =i g'yqg',

and the traceless part of the axial vector current

(10)
are all conserved without anomalies. Thus we
have the exact chiral flavor symmetry SU(N)~
SV(N)„ U(1). But the current

5 Q J srs

has an anomaly'

sq J„'=—i(Ng /16'')G„„'G„„'.

~q' =2N (12)

To calculate the amplitude for such an event di-
rectly in Minkowsky space one needs more under-
standing of the quantum mechanical tunneling from
one vacuum to the gauge-rotated vacuum. In
practice it is much easier to make use of the ex-
plicit solution in Euclidean space. Let us assume
then that all Green's functions in Minkowsky space
can simply be obtained from the Euclidean ones
by analytic continuation,
Let us consider the vacuum-to-vacuum ampli-

tude in Euclidean space, first without, and then
with source insertions in the Lagrangian4:

Let us now compare this with Eq. (2).
A configuration in Minkowsky space with n =1

would be associated with a violation of axial charge
conservation:

(0)0) = 1SA&if' Qy exp J (i'g'"g (A)+8'™~(A,g)+l', i (A)+gg""'(A, y))d'x, (13)
where C~'" fixes the gauge and g@'" is the corresponding Faddeev-Popov ghost term; cp is the ghost
field. We perform the perturbation expansion around those values of the fields where the exponent is
stationary. The solution of Eil. (2) is such a stationary point. Collective coordinates must be intro-
duced for x, and A. . The first will lead to energy-momentum conservation in an obvious way; the sec-
ond might at first sight lead to infinities at both ends of the scale, but there are natural cutoff s, as we
will see later.
The arguments that follow now must be considered as a summary of a series of mathematical manip-

ulations needed to compute the wanted amplitudes. Let us expand
A a A ac1+A aqu ggauga+fermicu+ghost ggcl} AquM Aqu
P P P 1 2 3

+ higher orders in the quantum fields.
It will be very convenient' to use the so-called "background gauge":

affix r
(D clA qa)a D ac cl ~ 6ac & A b, cl

2 p p y p p +g abc p

(14)

(16)

Because we introduced collective coordinates, we may restrict the quantum fields to be orthogonal to
those values that generate pure translations or dilatations of the classical solution. The amplitude (in
the one-EGS sector) is now formally

(0)0) = fd'x jdA(detJ)(d. etM, ) 'I'(detM, )(detM, ) exp JZ(A' )d'x.
Here (det J) is the Jacobian following from our
transition to collective coordinates. If the back-
ground gauge is used it turns out to be finite and
proportional to X '. From Eil. (6) it follows that
the exponent equals

exp(- 8m'/g'), (17)

M,Aq"=Z, Aq", M,q=Z, q, M,q =Z,y. (18)

which explains why we get results that are unob-
tainable through ordinary perturbation expansions
with respect to g'.
The other determinants are in principle ob-

tained by solving the equations

) Now M j axld ~3 have some zero eigenvalue s
that neatly cancel. But there are also solutions
to

Ma( = 0, g = (1+xa) +2u,

where u is a fixed tensor with Dirac and isospin
indices. There is one such solution for each of
the N flavors. They are chiral solutions, very
much like the fermion bound states described by
Jackiw and Rebbi' in one and three spacelike di-
mensions (but stationary in time). These zero
eigenvalues are not eaJ1celed by anything, so
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Including fermions:
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where

Duifii' =8 ui)' —ai7, A ir'g'. (8)

I will eall the SU(2) index i "color" and the index
t =1,...,N "flavor. " The vector currents
Jq" =i g'yqg',

and the traceless part of the axial vector current

(10)
are all conserved without anomalies. Thus we
have the exact chiral flavor symmetry SU(N)~
SV(N)„ U(1). But the current

5 Q J srs

has an anomaly'

sq J„'=—i(Ng /16'')G„„'G„„'.

~q' =2N (12)

To calculate the amplitude for such an event di-
rectly in Minkowsky space one needs more under-
standing of the quantum mechanical tunneling from
one vacuum to the gauge-rotated vacuum. In
practice it is much easier to make use of the ex-
plicit solution in Euclidean space. Let us assume
then that all Green's functions in Minkowsky space
can simply be obtained from the Euclidean ones
by analytic continuation,
Let us consider the vacuum-to-vacuum ampli-

tude in Euclidean space, first without, and then
with source insertions in the Lagrangian4:

Let us now compare this with Eq. (2).
A configuration in Minkowsky space with n =1

would be associated with a violation of axial charge
conservation:

(0)0) = 1SA&if' Qy exp J (i'g'"g (A)+8'™~(A,g)+l', i (A)+gg""'(A, y))d'x, (13)
where C~'" fixes the gauge and g@'" is the corresponding Faddeev-Popov ghost term; cp is the ghost
field. We perform the perturbation expansion around those values of the fields where the exponent is
stationary. The solution of Eil. (2) is such a stationary point. Collective coordinates must be intro-
duced for x, and A. . The first will lead to energy-momentum conservation in an obvious way; the sec-
ond might at first sight lead to infinities at both ends of the scale, but there are natural cutoff s, as we
will see later.
The arguments that follow now must be considered as a summary of a series of mathematical manip-

ulations needed to compute the wanted amplitudes. Let us expand
A a A ac1+A aqu ggauga+fermicu+ghost ggcl} AquM Aqu
P P P 1 2 3

+ higher orders in the quantum fields.
It will be very convenient' to use the so-called "background gauge":

affix r
(D clA qa)a D ac cl ~ 6ac & A b, cl

2 p p y p p +g abc p

(14)

(16)

Because we introduced collective coordinates, we may restrict the quantum fields to be orthogonal to
those values that generate pure translations or dilatations of the classical solution. The amplitude (in
the one-EGS sector) is now formally

(0)0) = fd'x jdA(detJ)(d. etM, ) 'I'(detM, )(detM, ) exp JZ(A' )d'x.
Here (det J) is the Jacobian following from our
transition to collective coordinates. If the back-
ground gauge is used it turns out to be finite and
proportional to X '. From Eil. (6) it follows that
the exponent equals

exp(- 8m'/g'), (17)

M,Aq"=Z, Aq", M,q=Z, q, M,q =Z,y. (18)

which explains why we get results that are unob-
tainable through ordinary perturbation expansions
with respect to g'.
The other determinants are in principle ob-

tained by solving the equations

) Now M j axld ~3 have some zero eigenvalue s
that neatly cancel. But there are also solutions
to

Ma( = 0, g = (1+xa) +2u,

where u is a fixed tensor with Dirac and isospin
indices. There is one such solution for each of
the N flavors. They are chiral solutions, very
much like the fermion bound states described by
Jackiw and Rebbi' in one and three spacelike di-
mensions (but stationary in time). These zero
eigenvalues are not eaJ1celed by anything, so
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chiral breaking process
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Simplest way to enhance the UV contributions:

I) Larger αs at the UV to enhance

II) Closing fermion lines by Higgs:  

Figure 3: The axion mass ratio for the boundary fermions case (assuming ↵s(mZ) =
0.118), as a function of 1/R for various contours of ✏ = (0.3, 0.25, 0.2) (top to bottom).
The solid lines are the exact results obtained from a numerical integration of (8) and no
higher dimension terms (c6 = 0). The green dashed line represents the addition of the
higher dimension term (11) with c6 = 0.5 and ✏ = 0.52 (0.47) for the upper (lower) line.
The red line depicts the maximum enhancement in the strong coupling limit using ma,5f .

masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
of axion mass in the 4D moose models of [24, 25], as well as in our 5D model. Thus the
suppression is only proportional to the Yukawa couplings and loop factors, namely:
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
axion mass low-energy contribution can be unambiguously determined from QCD chiral
perturbation theory to be [2, 30],
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where m⇡ ' 135 MeV, f⇡ ' 92 MeV, and mu/md ' 0.46. Using the result (10) with
b0 = 7 and including the factor (22), the axion mass ratio becomes:
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0.118), as a function of 1/R for various contours of ✏ = (0.3, 0.25, 0.2) (top to bottom).
The solid lines are the exact results obtained from a numerical integration of (8) and no
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masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
axion mass low-energy contribution can be unambiguously determined from QCD chiral
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
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masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
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b0 = 7 and including the factor (22), the axion mass ratio becomes:

ma

ma,QCD
'

q
2fC[3]

✓
2⇡

↵s(1/R)

◆3 (mu + md)p
mumd

1

m⇡f⇡R

2

e

� 1
2(

2⇡
↵s(1/R)�⇤5R)

(⇤5R)
1
2 (b0�3)

. (24)

9

Figure 3: Instanton vacuum diagram arising from closing the SM fermion legs with Higgs
loops.

masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop (see Figure 3). Thus the suppression is only proportional to the Yukawa
couplings and loop factors, namely:
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where yu,d,c,s,t,b are the SM Yukawa couplings. This is one of the ingredients leading to
the enhancement of the axion mass in the 4D moose models of [24, 25], as well as in our
5D model.

With the introduction of fermions, the axion mass low-energy contribution can be
unambiguously determined from QCD chiral perturbation theory to be [2, 28],
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where m⇡ ' 135 MeV, f⇡ ' 92 MeV, and mu/md ' 0.46. Using the result (10) with
b0 = 7 and including the factor (22), the axion mass ratio becomes:
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Here we have not considered higher dimension terms, so the path integral is dominated
by instantons of size ⇢⇤ ⇠ 1/⇤5. As discussed in sec. 2.2, the presence of higher dimension
terms can increase ⇢⇤, making the result less dependent on the cuto↵. Note that in (24)
the chiral suppression factor f is mitigated by the fact that ↵s runs slower towards the
UV due to the SM fermions, and therefore ↵s(1/R) is larger, implying that the exponential
suppression is smaller. Using (20) and approximating the pion and quark masses with
the QCD scale, we obtain a positive exponent in (24) for ✏ & 0.14. The exact numerical
result for ma/ma,QCD is plotted in Figure 4, where a sizeable enhancement can be seen
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Figure 3: The axion mass ratio for the boundary fermions case (assuming ↵s(mZ) =
0.118), as a function of 1/R for various contours of ✏ = (0.3, 0.25, 0.2) (top to bottom).
The solid lines are the exact results obtained from a numerical integration of (8) and no
higher dimension terms (c6 = 0). The green dashed line represents the addition of the
higher dimension term (11) with c6 = 0.5 and ✏ = 0.52 (0.47) for the upper (lower) line.
The red line depicts the maximum enhancement in the strong coupling limit using ma,5f .

masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
of axion mass in the 4D moose models of [24, 25], as well as in our 5D model. Thus the
suppression is only proportional to the Yukawa couplings and loop factors, namely:
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
axion mass low-energy contribution can be unambiguously determined from QCD chiral
perturbation theory to be [2, 30],
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where m⇡ ' 135 MeV, f⇡ ' 92 MeV, and mu/md ' 0.46. Using the result (10) with
b0 = 7 and including the factor (22), the axion mass ratio becomes:
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from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
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masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
of axion mass in the 4D moose models of [24, 25], as well as in our 5D model. Thus the
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
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where m⇡ ' 135 MeV, f⇡ ' 92 MeV, and mu/md ' 0.46. Using the result (10) with
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Figure 3: The axion mass ratio for the boundary fermions case (assuming ↵s(mZ) =
0.118), as a function of 1/R for various contours of ✏ = (0.3, 0.25, 0.2) (top to bottom).
The solid lines are the exact results obtained from a numerical integration of (8) and no
higher dimension terms (c6 = 0). The green dashed line represents the addition of the
higher dimension term (11) with c6 = 0.5 and ✏ = 0.52 (0.47) for the upper (lower) line.
The red line depicts the maximum enhancement in the strong coupling limit using ma,5f .

masses and Nf the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop FIGURE?. This is one of the ingredients leading to the enhancement
of axion mass in the 4D moose models of [24, 25], as well as in our 5D model. Thus the
suppression is only proportional to the Yukawa couplings and loop factors, namely:
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where yu,d,c,s,t,b are the SM Yukawa couplings. With the introduction of fermions the
axion mass low-energy contribution can be unambiguously determined from QCD chiral
perturbation theory to be [2, 30],
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where m⇡ ' 135 MeV, f⇡ ' 92 MeV, and mu/md ' 0.46. Using the result (10) with
b0 = 7 and including the factor (22), the axion mass ratio becomes:
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much larger than QCD!

Simplest model:

But, how to keep the scalars light? 
(plenty of new hierarchy problems)



Mirror worlds

Using the explicit form for the fermion zero modes7  (0)

f in Eq. (3.24) I simplifies to
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Using the identity Z
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where K
1

is a modified Bessel function of the second kind, we can evaluate I explicitly in the

limit ⇢⌧ 1/mH

I ' 1

12⇡2⇢2
. (3.37)

Plugging this into Eq. (3.33) we can immediately write down the leading contribution to

the potential for the ✓ angle, generated by 1-(anti)instanton configurations, for theories with

massless fermions and a Yukawa interaction
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24⇡
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It is worth emphasizing that I could be estimated in the e↵ective field theory by soaking

up fermion legs of the ’t Hooft operator with the Higgs propagators. However, the EFT

result would be cuto↵ dependent while the above computation is completely convergent and

calculable. For more on the correct value of the cuto↵ scale see App. A.

4 Small instantons in product group models

Small instanton contributions to the axion mass can dominate over the non-perturbative

large QCD instantons in partially broken gauge theories with a non-trivial embedding of

SU(3)QCD (see Sec. 2). An example of such a setup are the models proposed by Agrawal and

Howe [12, 13], in which a product gauge group consisting of k SU(3) factors is spontaneously

broken at a scale M to its diagonal subgroup by k � 1 link fields ⌃i i+1

SU(3)
1

⇥ SU(3)
2

⇥ . . .⇥ SU(3)k ! SU(3)QCD . (4.1)

The diagonal subgroup can then be identified with SU(3)QCD. In the following we will assume

that all SM quarks are only charged under SU(3)
1

. For a diagrammatic depiction of the model

see Fig. 2. The individual SU(3) factors by themselves are completely broken and therefore

the 1-instanton e↵ects are calculable and finite. The 1-instanton configuration in low energy

QCD corresponds to k-instantons of the UV theory with one instanton in each SU(3) factor.

In the following we will first discuss some details of the model before we explicitly compute

7Note that similarly to the scalars �in one should rotate  (0)

f with the general SU(N)/SU(N � 1) coset

element ⌦. However, due to the SU(N) invariant Yukawa interaction, the ⌦ dependence cancels out and I is

independent of µ̃.

– 16 –

Other options:

1)

1I)
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Figure 1: ⇠ as a function of R/⇢.

instanton calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D
theory admits the following instanton solution in Euclidean space:

A

a
µ(x, y) = A

(I)a
µ (x), A

a
5(x, y) = 0, (5)

where

A

(I)a
µ (x) =

2 ⌘

a
µ⌫(x � x0)⌫

(x � x0)2 + ⇢

2
, (6)

is the 4D instanton configuration [20] in the regular gauge with center x0 and size ⇢. The
tensors ⌘

a
µ⌫ are the group-theoretic ’t Hooft eta-symbols [23] and a denotes the gauge

isospin index. The 5D instanton solution (5) can be simply thought of as wrapping the
4D solution (6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a
multi-instanton configuration with winding numbers (1, 1, . . . , 1). Importantly, it does not
appear to be the continuum limit of the 4D instantons used in the moose model of [24] that
corresponds to the combination of (1, 0, 0 . . . , 0)+(0, 1, 0 . . . , 0)+(0, 0, 1 . . . , 0)+ . . . . This
latter configuration would correspond to instantons localized in the bulk i.e. Aµ(x, y) =

A

(I)
µ (x)�(y). However this is not a solution of the 5D equations of motion, and therefore

the 4D moose model of [24] does not reconstruct to a 5D theory.
The 5D instanton solution (5) minimizes the action (1) to give (ignoring for now the

axion terms)

S

(I)
5 =

8⇡3
R

g

2
5

=
2⇡

↵s
, (7)

where we have used the relation (3) with L = ⇡R. To obtain the contribution of the
instanton to the partition function we must also consider the fluctuations of the 5D
gauge fields about the instanton solution (5). This means not only including the gluon
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fluctuations but also the KK contributions. The details of this calculation are given in
Appendix A, and the final result for a pure Yang-Mills SU(N) theory is presented in (41).
For SU(3) the result is

Z R
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5
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↵s(1/R)
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, (8)

where C[3] ' 1.5 ⇥ 10�3, and the e↵ective action is given by

Se↵ =
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↵s(1/R)
� 3⇠(R/⇢)

R

⇢

+ b0 ln
R

⇢

, (9)

where ↵s(1/R) is the YM coupling evaluated at 1/R (see (40) for the exact definition) and
b0 = 11 (the pure QCD � function coe�cient) is the contribution from the gauge boson
zero modes. The function ⇠(R/⇢) is plotted in Figure 1. The quantity K that appears
on the r.h.s. of (8) is a dimensionless factor resulting from evaluating the integral in (8).
Note that since we are only considering the e↵ect of 5D small instantons, the integration
region in (8) is limited to 1/⇤5 6 ⇢ 6 R. The dependence of the lower limit of integration
on 1/⇤5 can make the contribution very sensitive to the UV completion details. This will
be further discussed in Section 2.2.

The result (8) reveals a new, interesting feature. There is a power-law term (R/⇢) in
the exponent arising from the KK modes with a positive coe�cient, ⇠(R/⇢) > 0, which
now causes the integral over the instanton size ⇢ to receive a large contribution from the
small instantons of size, ⇢ ⇠ 1/⇤5. As we will show, in some parameter regions this
contribution can overcome the IR contribution dominated by large instantons of order
⇢ ⇠ 1/⇤QCD.

An approximate expression for the dimensionless factor K on the r.h.s. of (8) can
be obtained by evaluating the integral in (8) and using the fact that ⇠(R/⇢) ⇠ 1/3 for
R/⇢ & 20. This gives
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Thus we see that for su�ciently large ⇤5R, the power-law term in the e↵ective action (9)
leads to an exponential enhancement that can overcome the suppression from e

�2⇡/↵s(1/R)

to give a UV-dominated contribution to the integral in (8). Note that for the calculation
to be reliable, ⇤5R cannot saturate the bound (4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (10) is cuto↵ dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following
dimension six term to the 5D action:
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4g2
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instanton to the partition function we must also consider the fluctuations of the 5D
gauge fields about the instanton solution (5). This means not only including the gluon
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fluctuations but also the KK contributions. The details of this calculation are given in
Appendix A, and the final result for a pure Yang-Mills SU(N) theory is presented in (41).
For SU(3) the result is
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where ↵s(1/R) is the YM coupling evaluated at 1/R (see (40) for the exact definition) and
b0 = 11 (the pure QCD � function coe�cient) is the contribution from the gauge boson
zero modes. The function ⇠(R/⇢) is plotted in Figure 1. The quantity K that appears
on the r.h.s. of (8) is a dimensionless factor resulting from evaluating the integral in (8).
Note that since we are only considering the e↵ect of 5D small instantons, the integration
region in (8) is limited to 1/⇤5 6 ⇢ 6 R. The dependence of the lower limit of integration
on 1/⇤5 can make the contribution very sensitive to the UV completion details. This will
be further discussed in Section 2.2.

The result (8) reveals a new, interesting feature. There is a power-law term (R/⇢) in
the exponent arising from the KK modes with a positive coe�cient, ⇠(R/⇢) > 0, which
now causes the integral over the instanton size ⇢ to receive a large contribution from the
small instantons of size, ⇢ ⇠ 1/⇤5. As we will show, in some parameter regions this
contribution can overcome the IR contribution dominated by large instantons of order
⇢ ⇠ 1/⇤QCD.

An approximate expression for the dimensionless factor K on the r.h.s. of (8) can
be obtained by evaluating the integral in (8) and using the fact that ⇠(R/⇢) ⇠ 1/3 for
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Thus we see that for su�ciently large ⇤5R, the power-law term in the e↵ective action (9)
leads to an exponential enhancement that can overcome the suppression from e
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to give a UV-dominated contribution to the integral in (8). Note that for the calculation
to be reliable, ⇤5R cannot saturate the bound (4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (10) is cuto↵ dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following
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Thus we see that for su�ciently large ⇤5R, the power-law term in the e↵ective action (9)
leads to an exponential enhancement that can overcome the suppression from e
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to give a UV-dominated contribution to the integral in (8). Note that for the calculation
to be reliable, ⇤5R cannot saturate the bound (4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (10) is cuto↵ dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.
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Figure 1: ⇠ as a function of R/⇢.

instanton calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D
theory admits the following instanton solution in Euclidean space:

A

a
µ(x, y) = A

(I)a
µ (x), A

a
5(x, y) = 0, (5)

where
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(I)a
µ (x) =

2 ⌘

a
µ⌫(x � x0)⌫

(x � x0)2 + ⇢

2
, (6)

is the 4D instanton configuration [20] in the regular gauge with center x0 and size ⇢. The
tensors ⌘

a
µ⌫ are the group-theoretic ’t Hooft eta-symbols [23] and a denotes the gauge

isospin index. The 5D instanton solution (5) can be simply thought of as wrapping the
4D solution (6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a
multi-instanton configuration with winding numbers (1, 1, . . . , 1). Importantly, it does not
appear to be the continuum limit of the 4D instantons used in the moose model of [24] that
corresponds to the combination of (1, 0, 0 . . . , 0)+(0, 1, 0 . . . , 0)+(0, 0, 1 . . . , 0)+ . . . . This
latter configuration would correspond to instantons localized in the bulk i.e. Aµ(x, y) =

A

(I)
µ (x)�(y). However this is not a solution of the 5D equations of motion, and therefore

the 4D moose model of [24] does not reconstruct to a 5D theory.
The 5D instanton solution (5) minimizes the action (1) to give (ignoring for now the

axion terms)
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where we have used the relation (3) with L = ⇡R. To obtain the contribution of the
instanton to the partition function we must also consider the fluctuations of the 5D
gauge fields about the instanton solution (5). This means not only including the gluon
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fluctuations but also the KK contributions. The details of this calculation are given in
Appendix A, and the final result for a pure Yang-Mills SU(N) theory is presented in (41).
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where ↵s(1/R) is the YM coupling evaluated at 1/R (see (40) for the exact definition) and
b0 = 11 (the pure QCD � function coe�cient) is the contribution from the gauge boson
zero modes. The function ⇠(R/⇢) is plotted in Figure 1. The quantity K that appears
on the r.h.s. of (8) is a dimensionless factor resulting from evaluating the integral in (8).
Note that since we are only considering the e↵ect of 5D small instantons, the integration
region in (8) is limited to 1/⇤5 6 ⇢ 6 R. The dependence of the lower limit of integration
on 1/⇤5 can make the contribution very sensitive to the UV completion details. This will
be further discussed in Section 2.2.

The result (8) reveals a new, interesting feature. There is a power-law term (R/⇢) in
the exponent arising from the KK modes with a positive coe�cient, ⇠(R/⇢) > 0, which
now causes the integral over the instanton size ⇢ to receive a large contribution from the
small instantons of size, ⇢ ⇠ 1/⇤5. As we will show, in some parameter regions this
contribution can overcome the IR contribution dominated by large instantons of order
⇢ ⇠ 1/⇤QCD.

An approximate expression for the dimensionless factor K on the r.h.s. of (8) can
be obtained by evaluating the integral in (8) and using the fact that ⇠(R/⇢) ⇠ 1/3 for
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Thus we see that for su�ciently large ⇤5R, the power-law term in the e↵ective action (9)
leads to an exponential enhancement that can overcome the suppression from e

�2⇡/↵s(1/R)

to give a UV-dominated contribution to the integral in (8). Note that for the calculation
to be reliable, ⇤5R cannot saturate the bound (4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (10) is cuto↵ dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following
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where ↵s(1/R) is the YM coupling evaluated at 1/R (see (40) for the exact definition) and
b0 = 11 (the pure QCD � function coe�cient) is the contribution from the gauge boson
zero modes. The function ⇠(R/⇢) is plotted in Figure 1. The quantity K that appears
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on 1/⇤5 can make the contribution very sensitive to the UV completion details. This will
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Thus we see that for su�ciently large ⇤5R, the power-law term in the e↵ective action (9)
leads to an exponential enhancement that can overcome the suppression from e
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to give a UV-dominated contribution to the integral in (8). Note that for the calculation
to be reliable, ⇤5R cannot saturate the bound (4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (10) is cuto↵ dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following
dimension six term to the 5D action:

�S5 = � 1

4g2
5

Z
d

4
x

Z L

0

dy

c6

⇤2
5

Tr GMN⇤G

MN
, (11)
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[

☛  including the axion:

where c6 is a dimensionless constant. We will assume that c6 > 0 so that it stabilizes the
instanton action. Substituting (5) into (11) and performing the 5D integration leads to

Se↵ =
2⇡

↵s
+

3⇡

↵s

c6

(⇤5⇢)2
� 3⇠(R/⇢)

R

⇢

+ . . . , (12)

where the logarithmic term in (9) has been neglected. Note that the instanton solution
(5) is itself modified by the order 1/⇤2

5 terms in (11). However these corrections lead
to subleading terms of order 1/(⇤5⇢)4 in Se↵ , and can be neglected. Whereas Se↵ is
extremized near the UV size 1/⇤5 when c6 = 0, the inclusion of the higher dimension
term in (12) instead leads to an extremum

1

⇢⇤
' 3

c6
⇠(R/⇢)

✓
g

2
5⇤5

24⇡3

◆
⇤5 , (13)

where the ⇢ dependence in ⇠(R/⇢) has been neglected since it is approximately constant
for ⇢ ⌧ R. As long as the theory is perturbative at the cuto↵, g

2
5⇤5/(24⇡3) ⌧ 1,

the extremum condition (13) implies ⇢⇤ � 1/⇤5, and therefore the contribution (8) is
dominated by instantons of size ⇢⇤. As alluded to earlier, this means that the instanton
size is e↵ectively cuto↵ at ⇢⇤, and the factor K is approximately given by the expression
(10) with ⇤5 replaced by 1/⇢⇤. Of course there is no need to rely on the approximate
expression, and one can simply perform the numerical integration in (8) to obtain the
exact factor K. To reiterate the salient point, the integral in (8) with the higher dimension
term (11) included, is dominated by instantons of size ⇢⇤ where the 5D theory remains
perturbative, and therefore contributions from instantons of size 1/⇤5 are suppressed.
Furthermore, higher dimension terms (beyond those of (11)) can be neglected, as they are
suppressed by higher powers of 1

⇤5⇢⇤
⌧ 1, and the calculation remains under theoretical

control.

2.3 5D Small Instanton Corrections to the Axion Mass

To calculate the contribution to the axion mass from the enhanced instanton density,
we next add the axion field. For a constant background axion field, a, in the instanton
background (5) we obtain

i

a

f

1

32⇡2

Z
d

4
x Tr[G(I)

µ⌫
e
G

(I)µ⌫ ] = i

a

f

, (14)

where the winding number is one. The e↵ective action (9) is then modified by replacing
Se↵ ! Se↵ � ia/f . Summing over both instanton and anti-instanton contributions in the
dilute instanton gas approximation [26, 27], leads to

Z =
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Figure 4: The axion mass ratio for the boundary fermions case (assuming ↵s(mZ) =
0.118), as a function of 1/R for various contours of ✏ = (0.3, 0.25, 0.2) (top to bottom).
The solid lines are the exact results obtained from a numerical integration of (8) and no
higher dimension terms (c6 = 0). The green dashed line represents the addition of the
higher dimension term (11) with c6 = 0.5 and ✏ = 0.52 (0.47) for the upper (lower) line.
The red line depicts the maximum enhancement in the strong coupling limit using ma,5f .

that depends sensitively on ✏. An enhancement at low compactification scales requires
larger values of ✏.

The maximum possible enhancement occurs when the 5D theory is strongly coupled at
⇤5. In this case the naive dimensional analysis estimate for the axion mass with fermion
contributions then becomes

m

2
a,5f ⇠ f

⇤4
5

f

2
, (25)

where the suppression factor f defined in (22) has been included, since we assume that
there are no other sources of chiral breaking in the 5D model beyond the SM Higgs
Yukawas.

The fermion suppression f in (25) could actually be removed if we relax this as-
sumption and consider extra heavy Higgs fields coupled to the SM quarks with order one
Yukawa couplings [8]. However this comes at the expense of possibly introducing new
CP phases in the heavy Higgs couplings that could spoil the axion solution to the strong
CP problem. Even if these heavy Higgs fields are introduced (and for some reason do
not introduce new phases) the suppression cannot be entirely removed because there is
a maximum value for the 5D instanton contribution to the axion mass. This arises from
the fact that 5D small instantons can also contribute to the up-quark Yukawa coupling
(for instance, y

(I)
u ) that cannot be larger than the experimental value yu ⇠ mu/v (unless
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Gμ

The only instanton found in the AdS5 is a “cylindrical” one:

Figure 1: ⇠ as a function of R/⇢.

instanton calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D
theory admits the following instanton solution in Euclidean space:

A

a
µ(x, y) = A

(I)a
µ (x), A

a
5(x, y) = 0, (5)

where

A

(I)a
µ (x) =

2 ⌘

a
µ⌫(x � x0)⌫

(x � x0)2 + ⇢

2
, (6)

is the 4D instanton configuration [20] in the regular gauge with center x0 and size ⇢. The
tensors ⌘

a
µ⌫ are the group-theoretic ’t Hooft eta-symbols [23] and a denotes the gauge

isospin index. The 5D instanton solution (5) can be simply thought of as wrapping the
4D solution (6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a
multi-instanton configuration with winding numbers (1, 1, . . . , 1). Importantly, it does not
appear to be the continuum limit of the 4D instantons used in the moose model of [24] that
corresponds to the combination of (1, 0, 0 . . . , 0)+(0, 1, 0 . . . , 0)+(0, 0, 1 . . . , 0)+ . . . . This
latter configuration would correspond to instantons localized in the bulk i.e. Aµ(x, y) =

A

(I)
µ (x)�(y). However this is not a solution of the 5D equations of motion, and therefore

the 4D moose model of [24] does not reconstruct to a 5D theory.
The 5D instanton solution (5) minimizes the action (1) to give (ignoring for now the

axion terms)

S

(I)
5 =

8⇡3
R

g

2
5

=
2⇡

↵s
, (7)

where we have used the relation (3) with L = ⇡R. To obtain the contribution of the
instanton to the partition function we must also consider the fluctuations of the 5D
gauge fields about the instanton solution (5). This means not only including the gluon

4
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In the way… we have found plenty of simple analytical 
Instanton-Anti-instanton solutions

obtained by conformal transformations

Figure 1: A 2D contour of the 5D Lagrangian density (26) (multiplied by the volume
factor 2π2x3 and for ρ = 1) evaluated at 10, depicting an instanton and anti-instanton
both located at xµ = 0 (where two Euclidean coordinates x2,3 are not shown). As z
increases, the instanton size remains fixed while the anti-instanton size grows until it
annihilates the instanton at z ∼ ρ.

of the UV localized gluons. Since the gauge coupling grows towards the UV boundary,
small instantons could give significant contributions to the path integral. In fact, the
AdS/CFT dictionary relates the renormalization scale µ of the QCD gauge coupling g(µ)
to the inverse of the 5th coordinate z, i.e. µ ∼ 1/z. Thus, given that quantum corrections
in the Euclidean action are encoded by the running gauge coupling at µ = 1/ρ, suggests
that there must be an instanton configuration in the 5D AdS-Yang-Mills theory localized
on the UV boundary, which extends only a finite distance z ∼ ρ into the 5D bulk.

To look for such a solution we consider an SU(2) Yang-Mills theory in Euclidean AdS5

whose limit on the AdS boundary is a 4D instanton. However, it turns out that such a
solution is, in fact, not possible because topological charge conservation implies that the
4D instanton cannot “disappear” into the AdS bulk (as can also be directly verified by
examining the 5D AdS Yang-Mills equations). Indeed the only instanton solution to the
5D AdS Yang-Mills equations that we obtain is from uplifting the 4D instanton to the
AdS5 bulk as a “cylindrical” configuration with no dependence on the 5th coordinate.
The corresponding topological charge, defined on 4D slices at any given z, of this solution
is then always one. Since this uplifted instanton solution is not localized, we obtain
SE = 8π2/g2(z−1

IR ), where zIR ≫ ρ is an IR cutoff (identified with the confinement scale
of the CFT). This means that despite the fact that the gauge coupling increases towards
the UV boundary, small instantons are highly suppressed and ineffective.

This surprising conclusion therefore suggests that AdS5 Yang-Mills theory only ad-
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Figure 3: Contour plots of the topological charge density (multiplied by the volume factor
2π2x4 and for ρ = 1) of the uplifted 4D instanton (left) and the instanton-anti-instanton
(25) (right). The diagonal line, x = z in the right plot corresponds to zero charge density
with the upper (lower) region depicting contours of negative (positive) charge density
associated with the anti-instanton (instanton).

transformations. This includes both discrete and continuous transformations which are
given in Appendix A. By transforming (19), new solutions to the 5D AdS Yang-Mills
equations will be generated.

3.3.1 An instanton-anti-instanton by 5D inversion

Consider the uplifted 4D anti-instanton solution, f(x, z) = ρ2/(x2+ρ2). Under a discrete
5D inversion (50) with δ = ρ, this solution transforms to

f(x, z) =
(x2 + z2)2

x2ρ2 + (x2 + z2)2
, (24)

where the matrix gauge parameter part contained in the square brackets of (11) remains
invariant using (48). This is also a solution of (14), and when z = 0 we recover a 4D
instanton solution.3 The solution (24) is shown in Figure 2. Note that performing a 5D
inversion on the uplifted 4D instanton solution would instead give rise to the solution
1− f (with f given in (24)), which becomes an anti-instanton at z = 0.

The topological charge density corresponding to (24) is given by

D = 48
(x2 − z2)(x2 + z2)3ρ4

(x2ρ2 + (x2 + z2)2)4
. (25)

3This is expected because a 4D coordinate inversion transforms an anti-instanton into an instanton
and vice-versa.
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theory to a large N expansion with the 5D gravitational coupling scaling as GN ∼ 1/N2

while g25 ∼ 1/N .
Using the above holographic model we can calculate the CFT contribution to the 4D

Yang-Mills gauge coupling, as this will be useful later. This is done by integrating out
the 5D gauge boson as a function of the boundary field Aa

µ at the quadratic level to give
the UV-boundary term [6]

∫
d4x

1

4

(
L

g25
log

(
zIR
zUV

))
F a
µνF

aµν

∣∣∣∣∣
zUV

. (8)

This term diverges as zUV → 0. However, this divergence can be cancelled by the coun-
terterm (4). Indeed, by defining the “running” gauge coupling as

1

g24(µ)
=

1

g24
− L

g25
log(µzUV) , (9)

the bulk contribution (8) corresponds to the replacement g24 → g24(µ = z−1
IR ) in (4). This is

the expected result of an SU(2) Yang-Mills theory with β-function, βCFT ≡ L
g25

∼ N ≫ 1

from the CFT, that changes the Yang-Mills gauge coupling down to energies µ = z−1
IR .

Note that the running in (9) only includes the CFT matter contributions, while the 4D
gluon contributions, which are sub-dominant in the large N expansion, are neglected.

3 AdS5 Yang-Mills Euclidean configurations

3.1 Solution ansatz

To obtain solutions to (5) we assume the following ansatz:

Aa
µ(x, z) = 2ηaµν

xν

x2
f(x, z) , Aa

5(x, z) = 0 , (10)

where ηaµν is the ‘t Hooft symbol [11], x2 = x2
0 + x2

1 + x2
2 + x2

3 and f(x, z) is an arbitrary
function. The matrix gauge potential corresponding to the ansatz (10) can be written in
terms of a gauge parameter Ω as

Aµ(x, z) = f(x, z)
[
−i(∂µΩ)Ω

−1
]
, (11)

where

Ω =
1√
x2

(x⃗ · σ⃗ ∓ ix0I) , (12)

with Ω−1 = Ω† and σi (i = 1, 2, 3) are the Pauli matrices. Note that the matrix gauge
potential can be gauge transformed as

A′
µ = U †AµU − i(∂µU

†)U , (13)
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In the way… we have found plenty of simple analytical 
Instanton-Anti-instanton solutions

obtained by conformal transformations

Figure 1: A 2D contour of the 5D Lagrangian density (26) (multiplied by the volume
factor 2π2x3 and for ρ = 1) evaluated at 10, depicting an instanton and anti-instanton
both located at xµ = 0 (where two Euclidean coordinates x2,3 are not shown). As z
increases, the instanton size remains fixed while the anti-instanton size grows until it
annihilates the instanton at z ∼ ρ.

of the UV localized gluons. Since the gauge coupling grows towards the UV boundary,
small instantons could give significant contributions to the path integral. In fact, the
AdS/CFT dictionary relates the renormalization scale µ of the QCD gauge coupling g(µ)
to the inverse of the 5th coordinate z, i.e. µ ∼ 1/z. Thus, given that quantum corrections
in the Euclidean action are encoded by the running gauge coupling at µ = 1/ρ, suggests
that there must be an instanton configuration in the 5D AdS-Yang-Mills theory localized
on the UV boundary, which extends only a finite distance z ∼ ρ into the 5D bulk.

To look for such a solution we consider an SU(2) Yang-Mills theory in Euclidean AdS5

whose limit on the AdS boundary is a 4D instanton. However, it turns out that such a
solution is, in fact, not possible because topological charge conservation implies that the
4D instanton cannot “disappear” into the AdS bulk (as can also be directly verified by
examining the 5D AdS Yang-Mills equations). Indeed the only instanton solution to the
5D AdS Yang-Mills equations that we obtain is from uplifting the 4D instanton to the
AdS5 bulk as a “cylindrical” configuration with no dependence on the 5th coordinate.
The corresponding topological charge, defined on 4D slices at any given z, of this solution
is then always one. Since this uplifted instanton solution is not localized, we obtain
SE = 8π2/g2(z−1

IR ), where zIR ≫ ρ is an IR cutoff (identified with the confinement scale
of the CFT). This means that despite the fact that the gauge coupling increases towards
the UV boundary, small instantons are highly suppressed and ineffective.

This surprising conclusion therefore suggests that AdS5 Yang-Mills theory only ad-
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consistently with charge conservarion (q=0)

Instanton and anti-instanton 
annihilate at z~ρ!
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Figure 3: Contour plots of the topological charge density (multiplied by the volume factor
2π2x4 and for ρ = 1) of the uplifted 4D instanton (left) and the instanton-anti-instanton
(25) (right). The diagonal line, x = z in the right plot corresponds to zero charge density
with the upper (lower) region depicting contours of negative (positive) charge density
associated with the anti-instanton (instanton).

transformations. This includes both discrete and continuous transformations which are
given in Appendix A. By transforming (19), new solutions to the 5D AdS Yang-Mills
equations will be generated.

3.3.1 An instanton-anti-instanton by 5D inversion

Consider the uplifted 4D anti-instanton solution, f(x, z) = ρ2/(x2+ρ2). Under a discrete
5D inversion (50) with δ = ρ, this solution transforms to

f(x, z) =
(x2 + z2)2

x2ρ2 + (x2 + z2)2
, (24)

where the matrix gauge parameter part contained in the square brackets of (11) remains
invariant using (48). This is also a solution of (14), and when z = 0 we recover a 4D
instanton solution.3 The solution (24) is shown in Figure 2. Note that performing a 5D
inversion on the uplifted 4D instanton solution would instead give rise to the solution
1− f (with f given in (24)), which becomes an anti-instanton at z = 0.

The topological charge density corresponding to (24) is given by

D = 48
(x2 − z2)(x2 + z2)3ρ4

(x2ρ2 + (x2 + z2)2)4
. (25)

3This is expected because a 4D coordinate inversion transforms an anti-instanton into an instanton
and vice-versa.
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[
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]
, (11)

where

Ω =
1√
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(x⃗ · σ⃗ ∓ ix0I) , (12)
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Figure 4: A 2D contour of the Lagrangian density (33) (multiplied by the volume factor
4πx3 and for ρ = 1, d = 10) evaluated at 1. An anti-instanton appears at x0 = −10 and
x1 = x2 = x3 = 0 (Euclidean coordinates x2,3 are not shown) whose size grows and meets
at z ∼ d the instanton located at x0 = x1 = 0.

Similarly, the 4D N -instanton solutions [16, 17] can also be generalized to the 5D bulk
by transforming them with the 5D inversion (50). The analytic expressions are compli-
cated but one finds anti-instantons with z-dependent sizes that appear at the location of
the instantons, similar to the one instanton case. Thus, each instanton extends into the
5D bulk a distance z ∼ ρi, where ρi is the size of the i-th instanton.

3.3.2 An instanton-anti-instanton by 5D special conformal transformation

More general solutions can be obtained by considering special conformal transforma-
tions (53). Without loss of generality, we can choose the parameter dµ = (d, 0, 0, 0) so
that translations occur along the x0 axis. Assuming δ1 = δ2 = d, the uplifted 4D instanton
transforms to a solution dependent on d and z given by

Aa
M =

2d3

h(x, z)

⎛

⎜⎜⎝

−x1(2x0 + d) r25 − 2x2
1 + x0d −2x1x2 + x3d −2x1x3 − x2d −2x1z

−x2(2x0 + d) −2x1x2 − x3d r25 − 2x2
2 + x0d −2x2x3 + x1d −2x2z

−x3(2x0 + d) −2x1x3 + x2d −2x2x3 − x1d r25 − 2x2
3 + x0d −2x3z

⎞

⎟⎟⎠ ,

(31)
where r25 = x2 + z2 and

h(x, z) = d4
(
x2 + ρ2

)
+ 2d3x0

(
r25 + 2ρ2

)
+ d2

(
r25

(
r25 + 2ρ2

)
+ 4ρ2x2

0

)
+ 4dx0ρ

2r25 + ρ2r45 .
(32)
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Conclusions

● There is the possibility to give contributions to the axion 
mass from the UV = Small instantons

● Small instantons in AdS5 seem to be suppressed!

● We can enhance the small instanton contribution by 
enhancing the gauge coupling in the UV

● A flat extra dimension can do it, but we must be close to 
the non-perturbative limit

although plenty of nice analytical instanton-anti-instanton solutions

Not UV localized instantons!


