Axion mass from the UV

Alex Pomarol, IFAE/UAB, Barcelona

The axion, the neatest solution to the strong CP problem

Axion physics claim to be fully IR determined

from QCD quantities

lead to precise predictions for its DM abundance and the range of exp. searches **The axion**, the neatest solution to the strong CP problem

lead to precise predictions for its DM abundance and the range of exp. searches

How robust is this?

How easy/difficult is for the Axion to get mass from UV physics?

> **(of course, without spoiling the axion solution to the strong CP problem)**

Not to spoil the solution to the strong CP problem:

Mass from the anomaly: $\frac{a}{a}$

 $\frac{u}{f} G^{\mu\nu} \widetilde{G}_{\mu\nu}$ **ι** from instantons

Not to spoil the solution to the strong CP problem:

integrating over **fluctuations** around the instanton *<u>A</u>* α *D* (*x*) α *z*) α (*x*) α (*x*)

$$
A_{\mu}^{(I)a}(x) = \frac{2 \eta_{\mu\nu}^a (x - x_0)_{\nu}}{(x - x_0)^2 + \rho^2}
$$

Not to spoil the solution to the strong CP problem:

Not to spoil the solution to the strong CP problem:

Including fermions: I including formions'

conservation: 'tHooft 76

$$
\partial_{\mu} J_{\mu}^{5} = -i(Ng^{2}/16\pi^{2})G_{\mu\nu}^{a} \tilde{G}_{\mu\nu}^{a}
$$
 \longrightarrow $\Delta Q^{5} = 2N$

chiral breaking process

Including fermions: I including formions'

conservation: 'tHooft 76

UV instanton highly suppressed

◆³ (*m^u* + *md*) p*mum^d* $\ddot{}$ *m*⇡*f*⇡*R*² *e* 1 ↵*s*(1*/R*) ⇤5*^R*) $\overline{}$ l, $\boldsymbol{\epsilon}$ extra phase **but danger to generally** ↵*s*(1*/R*) p*mum^d* te ex +₁₁₂ B P P P P P P P P P (⇤5*R*) $\overline{\text{22.2 }}$ Or extra "Higgs" at the $U^{\mathcal{Y}}$ with larger couplings, where *for enerate* extra phases *b*⁰ = 7 and including the factor (22), the axion mass ratio becomes: axion mass low-energy contribution can be unambiguously determined from QCD chiral from QCD ch axion mass low-therefore contribution can be under the sequence of the unit of the unit of the unit of the chira Or extra "Higgs" at the UV with larger couplings, *DUL GANGER TO GENERA* Un extramine determined van de from QCD couplings, Or extra "Higgs" at the UV with larger couplings, but **danger** to generate extra phases

Extra color scalars (e.g. at the TeV) \blacktriangleright freezing α_s at the TeV

Extra color scalars (e.g. at the TeV) ☛ freezing αs at the TeV 0*.*118*), as a function of* 1*/R for various contours of* ✏ = (0*.*3*,* 0*.*25*,* 0*.*2) *(top to bottom). The solid lines are the exact results obtained from a numerical integration of (8) and no* Γ , Δ *t* Ω as a function of Γ , Δ *n* Γ , 0*.*², 0*. The solid lines are the exact results obtained from a numerical integration of (8) and no*

Extra color scalars (e.g. at the TeV) ☛ freezing αs at the TeV 0*.*118*), as a function of* 1*/R for various contours of* ✏ = (0*.*3*,* 0*.*25*,* 0*.*2) *(top to bottom). The solid lines are the exact results obtained from a numerical integration of (8) and no* Γ , Δ *t* Ω as a function of Γ , Δ *n* Γ , 0*.*², 0*. The solid lines are the exact results obtained from a numerical integration of (8) and no*

Extra color scalars (e.g. at the TeV) ☛ freezing αs at the TeV 0*.*118*), as a function of* 1*/R for various contours of* ✏ = (0*.*3*,* 0*.*25*,* 0*.*2) *(top to bottom). The solid lines are the exact results obtained from a numerical integration of (8) and no* Γ , Δ *t* Ω as a function of Γ , Δ *n* Γ , 0*.*², 0*. The solid lines are the exact results obtained from a numerical integration of (8) and no*

SU(3)*QCD* (see Sec. 2). An example of such a setup are the models proposed by Agrawal and **Other options:**
 Other options:

Agrawal, Howe 17

$SU(3)_1 \times SU(3)_2 \times \ldots \times SU(3)_k \rightarrow SU(3)_{QCD}$ 1)

the 1-instanton e⊿ects are calculated and finite. The 1-instanton in low energy are calculated and finite. The
●
●

The Collisponios, Hook, Hully, Piarques-Tavares To see Fig. 2. The individual *SU*(3) factors by themselves are completely broken and therefore 1I)

…
…

The diagonal subgroup can then be identified with *SU*(3)*QCD*. In the following we will assume Dimopoulos, Hook,Huang, Marques-Tavares 16

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610 T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

fluctuations but also the KK contributions but also the KK contributions. The details of this calculation are given in

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610 T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

fluctuations but also the KK contributions but also the KK contributions. The details of this calculation are given in

T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610 T.Gherghetta, V.V.Khoze, AP, Y.Shirman arXiv:2001.05610

fluctuations but also the KK contributions but also the KK contributions. The details of this calculation are given in

integrating up to:

Logarithmic correction to the gauge coupling of the gluon on the AdS boundary

Expected from the AdS/CFT correspondence: $\vert\langle \mathbf{JJ}\rangle \sim \log \mathbf{p}$

AdS5 ⬌ **CFT charged under QCD**

Extra dimensional AdS₅ T. Gherghetta, AP, arXiv:2109.xxx

The only instanton found in the AdS₅ is a "cylindrical" one: theory admits the following instanton solution in Euclidean solution in Euclidean space: \mathbf{no} **no z dependence**

$$
A_{\mu}^{a}(x, y) = A_{\mu}^{(I)a}(x), \qquad A_{5}^{a}(x, y) = 0
$$

Extra dimensional AdS₅ T. Gherghetta, AP, arXiv:2109.xxx

The only instanton found in the AdS₅ is a "cylindrical" one:

Extra dimensional AdS₅ T. Gherghetta, AP, arXiv:2109.xxx

The only instanton found in the AdS₅ is a "cylindrical" one:

In the way… we have found plenty of simple analytical Instanton-Anti-instanton solutions equations will be generated. 3.3311 Con-Anti-instanton solutions have tound plenty of

$$
A_{\mu}^{a}(x, z) = 2\eta_{\mu\nu}^{a} \frac{x_{\nu}}{x^{2}} f(x, z) , A_{5}^{a}(x, z) = 0
$$

$$
f(x, z) = \frac{(x^2 + z^2)^2}{x^2 \rho^2 + (x^2 + z^2)^2}
$$

 $obtained by conformal transformations$ increases, the instanton size remains fixed while the anti-instanton size grows until it

In the way… we have found plenty of simple analytical Instanton-Anti-instanton solutions equations will be generated. 3.3311 Con-Anti-instanton solutions have tound plenty of

 $obtained by conformal transformations$ increases, the instanton size remains fixed while the anti-instanton size grows until it

Conclusions

● There is the **possibility** to give contributions to the axion mass from the UV = **Small instantons**

● We can enhance the small instanton contribution by **enhancing the gauge coupling** in the UV

• A flat extra dimension can do it, but we must be close to the non-perturbative limit

● Small instantons in AdS5 seem to be suppressed!

Not UV localized instantons!

although plenty of nice analytical instanton-anti-instanton solutions