

Review of CP-violation and spectroscopy measurements at LHCb

LHCD THCD

Neville Harnew

University of Oxford

On behalf of the LHCb Collaboration

Corfu Summer Institute 2 September 2021

Outline

- General introduction
- An update of mixing and CP-violation measurements
 - New unitarity triangle measurements
 - Update on the angle γ
 - CP violation and mixing in charm
- New measurements in spectroscopy
- The upgraded LHCb detector and outlook
- Summary

Unitarity Triangle measurements

Amazing progress in the last 26 years; the SM remains intact, but a whole lot still to learn

LHCb Mixing and CPviolation in beauty and charm

Corfu Summer Institute

2 September 2021

N. Harnew

4

Corfu Summer Institute

The angle γ (a key measurement)

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically very clean

JHEP 01 (2014) 051, PRD 92(3):033002 (2015)

* assuming no significant New Physics in tree decays

Corfu Summer Institute

2 September 2021

N. Harnew

γ : indirect vs direct determinations

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

 γ combination from all direct measurements from tree decays

Determination from CKM fit excluding all direct measurements of γ

$$\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$$

(As of Summer 2019)

 $\gamma = (65.8^{+0.9}_{-1.3})^{\circ}$

http://ckmfitter.in2p3.fr

Reaching degree level precision from direct measurements is crucial

Corfu Summer Institute

The time-integrated mode: B⁻→D⁰K⁻

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

(and charge conjugate mode
$$B^+ \rightarrow \overline{D}^0 K^+$$
)

- Interference possible if D^0 and $\overline{D^0}$ decay to same final state
- Two possible decay paths to final state via D⁰ and $\overline{D^0}$

Branching fraction for favoured B decay only ~10⁻⁴

> Measurements require high statistics

New GLW & ADS γ measurements

GLW : where D^0 and \underline{D}^0 decay to CP eigenstates ADS : where D^0 and D^0 decay to flavour-specific states

Corfu Summer Institute

2 September 2021

N. Harnew

LHCb combination from different modes

LHCb-CONF-2021-001

The most recent combination includes the following modes:

B decay	D decay	Ref.	Dataset	Lumi	Status since	_					
				(fb^{-1})	Ref. [21]						
$B^\pm \to D h^\pm$	$D ightarrow h^+ h^-$	[23]	Run 1&2	9	Updated	D decay	Ref.	Dataset	Lumi	Statu	is since
$B^\pm \to D h^\pm$	$D \to h^+ \pi^- \pi^+ \pi^-$	[24]	Run 1	3	As before				(fb^{-1})	Ref.	[21]
$B^\pm \to D h^\pm$	$D \to h^+ h^- \pi^0$	[25]	Run 1	3	As before	$D \rightarrow l+l-$	[25 27	7] D 1	e-0	0	NI
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[22]	$\operatorname{Run} 2$	9	Updated	$D \rightarrow n n$	30-3	[] Run I	.&2	9	new
$B^\pm \to D h^\pm$	$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	[26]	Run 1&2	9	Updated	$D ightarrow h^+ h^-$	[38]	Run 1	8	3	New
$B^\pm o D^* h^\pm$	$D ightarrow h^+ h^-$	[23]	Run 1&2	5	Updated	$D ightarrow h^+ h^-$	[39]	Run 1	&2	9	New
$B^\pm \to D K^{*\pm}$	$D ightarrow h^+ h^-$	[27]	$\operatorname{Run}1\&2$	5	As before	$D \rightarrow K^+ \pi^-$	[40]	Run 1		3	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[27]	$\operatorname{Run}1\&2$	5	As before	$D \rightarrow K^+ \pi^-$	[41]	Dun 1	8-9	5	Now
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[28]	Run 1	3	As before	$D \to K^+ \pi^-$	[41]	Run I	.~2	5	INEW
$B^0 ightarrow DK^{*0}$	$D \to K^+ \pi^-$	[29]	Run 1&2	5	Updated	$D \to K^{\pm} \pi^{+} \pi^{+} \pi^{-}$	[42]	Run 1	e:	3	New
$B^0 \to DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[29]	Run 1&2	5	New	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[43, 44]	l] Run 1	&2	9	New
$B^0 \to D K^+ \pi^-$	$D ightarrow h^+ h^-$	[30]	Run 1	3	Supersede	$D \rightarrow K_{c}^{0} \pi^{+} \pi^{-}$	[45]	Run 1		1	New
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	[31]	Run 1	3	As before	2 1 1 2 3 1 1	[]		2	<u> </u>	1.0.0
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[32]	Run 1	3	As before						
$B^0_s \to D^\mp_s K^\pm$	$D_s^+ \to h^+ h^- \pi^+$	[33]	Run 1	3	As before						
$B^0_s \to D^\mp_s K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[34]	Run 1&2	9	New	_					

Corfu Summer Institute

10

LHCb combination from different modes

Breakdowns and evolution of γ results

Corfu Summer Institute

79.0

[59.0, 98.0]

 B_s^0

[41.0, 106.0]

Beauty and Charm unitarity triangles

Beauty system

B system : angles α , β , $\gamma \sim 1$ B_s system

B_s system : angle $\beta_s \sim \lambda^2$

Charm system

Corfu Summer Institute

2 September 2021

Diagrams from Jolanta Brodzicka

B_s weak mixing phase ϕ_s in **B**_s \rightarrow **J**/ $\psi \phi$

- "Golden mode" for this study is $B_s \rightarrow J/\psi \phi (\rightarrow K^+K^-)$
- Analogue of 2β (phase of B⁰ mixing) but in the B_s system
- Interference between B⁰ decay to J/ $\psi \phi$ directly and via B⁰ $\overline{B^0}$ oscillation gives rise to a CP violating phase in the SM : a time-dependent measurement $\phi_S = \phi_{Mixing} - 2 \phi_{Decay} = -2\beta_s$
- ϕ_{S} is expected to be very small in the SM and precisely predicted: $\phi_{SM} = -0.037 \pm 0.001$ rad (see eg Charles et al PRD84 (2011) 033005)

Corfu Summer Institute

LHCb combination

- $\phi_{\rm S}$ fitted value correlated with $\Delta\Gamma_{\rm s}$ = width diff. of the B_s mass eigenstates \rightarrow plot as contours in ($\phi_{\rm S} vs \Delta\Gamma_{\rm S}$) plane
- ϕ_S is 0.1 σ from Standard Model and 1.6 σ from zero

 $\Delta \Gamma_{\rm S} = 0.0813 \pm 0.0048 \text{ ps}^{-1}$ CP-violating phase: $\phi_{\rm S} = -0.040 \pm 0.025 \text{ rad}$

HFLAV combination all experiments

16

CP violation in charm

Most promising channels are Cabibbo-suppressed (CS) decays where CPV may arise from the interference between the tree and the penguin amplitudes

• SM prediction is very small $O(10^{-4}) \rightarrow O(10^{-3})$

Reminder of the "\Delta A_{CP}" measurement

- Tag D^0 and $\overline{D^0}$ via "prompt" and "semileptonic" decays:
 - Prompt: coming from primary vertex, i.e. $D^{*+-} \rightarrow D^0 \pi^{+-}_{soft}$
 - Semileptonic: coming from B-decays, i.e. $B^{+-} \rightarrow \overleftrightarrow{D}^0 \mu^{+-} X$
- The raw asymmetry (A) in Cabibbo-suppressed $D^0 \rightarrow h^- h^+$ decays (h = K or π) defined as

$$A(D \to f) = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})}$$

includes physics and detector effects:

$$A = A_{CP} + A_D + A_P$$

Phys. Rev. Lett. 122 (2019) 211803

Detection asymmetry from π^+_{soft} or μ^+ Production asymmetry from D^{*+} or B decays

To eliminate these contributions and cancel the systematics measure :

 $\Delta A_{CP} = A(K^-K^+) - A(\Pi^-\Pi^+) = A_{CP}(K^-K^+) - A_{CP}(\Pi^-\Pi^+)$ Corfu Summer Institute 2 September 2021 N. Harnew

Observation of CPV in charm decays

 Measurement performed with combined Run-I and Run-2 data-set

Phys. Rev. Lett. 122 (2019) 211803

 $\Delta A_{CP} = [-15.4 \pm 2.9] \times 10^{-4}$

A 5.3σ measurement of CPV in the charm system !

Corfu Summer Institute

Charm CPV : more recent measurements

• Direct CPV : $A_{CP}(D^0 \rightarrow K^0_{\varsigma}K^0_{\varsigma})$

• Use $D^0 \to K^+K^-$ channel as control for $A_D \& A_P$

 $A_{CP} = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ [last uncertainity : CP violation of control channel]

arXiv:2105.01565 (2021)

• Consistent with no violation at the 2.4 σ level

(s) $\rightarrow h^+ \pi^0$

JHEP 06 (2021) 019

$$egin{aligned} \mathcal{A}_{CP} \left(D^+ o \pi^+ \pi^0
ight) &= (-1.3 \pm 0.9 \pm 0.6) \,\%, \ \mathcal{A}_{CP} \left(D^+ o K^+ \pi^0
ight) &= (-3.2 \pm 4.7 \pm 2.1) \,\%, \ \mathcal{A}_{CP} \left(D^+ o \pi^+ \eta
ight) &= (-0.2 \pm 0.8 \pm 0.4) \,\%, \ \mathcal{A}_{CP} \left(D^+ o K^+ \eta
ight) &= (-6 \pm 10 \pm 4) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o K^+ \pi^0
ight) &= (-0.8 \pm 3.9 \pm 1.2) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o \pi^+ \eta
ight) &= (0.8 \pm 0.7 \pm 0.5) \,\%, \ \mathcal{A}_{CP} \left(D^+_s o K^+ \eta
ight) &= (0.9 \pm 3.7 \pm 1.1) \,\%, \end{aligned}$$

- All compatible with no CP violation
- More data needed !
- Note that LHCb is now regularly extracting measurements with neutrals in the final state (K_sK_s and h⁰h⁺)

Corfu Summer Institute

D⁰ mixing parameters in $D^0 \rightarrow K_S^0 \pi^+\pi^-$

- Mass eigenstates $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$
- $x = (m_1 m_2)/\Gamma$; $y = (\Gamma_1 \Gamma_2)/2\Gamma$, $\phi = \arg(q/p)$ until now x measured only at ~3 σ (HFLAV)
- 30.6 x 10⁶ of D⁰ → K_S⁰ <u>π</u>⁺ π⁻ decays with very small background. D or D flavour tagging using D* → D π decays
- Use the bin-flip method
 - Measure ratios between D⁰ and D⁰ candidates in symmetric bins of Dalitz plot m² (K_S⁰ π⁻) vs m² (K_S⁰ π⁺)
 - 2 (flavour) x 16 (Dalitz bin) x 13 (decay time bin) subsamples
 - In each bin, strong-phase difference approx. constant for D⁰ and D⁰ amplitudes (input from CLEOc and BESIII)

2 September 2021

22

N. Harnew

D⁰ mixing parameters in $D^0 \rightarrow K_S^0 \pi^+\pi^-$

- Plot Ratio R_i : asymmetry for Dalitz bin *i* in bins of decay time
 - Deviations from constant values are due to mixing
- First observation with a significance of more than 7 standard deviations of the mass difference between mass eigenstates

arXiv:2106.03744

Corfu Summer Institute

ΔY in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays

- ΔY is the slope of the time-dependent asymmetry of the decay rates of D⁰ and D⁰ mesons
- It is a measure of CP violation in mixing and interference
- Strategy: measure asymmetry in bins of decay time and measure the linear slope

$$\Delta Y_{K^+K^-} = (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi^+\pi^-} = (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4}$$
Combining
$$\Delta Y = (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}$$

- Compatible with 0 within 2σ
- This result improves by nearly a factor 2 the precision of the previous world average

arXiv:2105.09889

LHCb new (exotic) spectroscopy measurements

Corfu Summer Institute

New hadron discoveries at the LHC

Corfu Summer Institute

New hadron discoveries at LHCb

With thanks to Partick Koppenberg

Pentaquark discovery by LHCb

- Discovery of X(3872) now χ_{c1}(3872) by Belle in 2003 started new era in exotic spectroscopy
- First observation of $P_c(4312)^+$, $P_c(4440)^+$ and $P_c(4457)^+$ as narrow resonances in the mass spectrum of $(J/\psi p)$ in $\Lambda_b \rightarrow (J/\psi p) \text{ K}^-$ decays PRL 115 (2015) 072001
- Consistent with cc uud pentaquarks : allowed by QCD, but not observed in 50 years of searching.

Nature of pentaquarks ?

Possible models describing the observed pentaquark states :

- Tightly bounded states
- Re-scattering models
- Meson-baryon molecules

- Molecular-state model favoured : bound mesons and baryons are expected to form narrow resonances just below mass thresholds
- More work needed

Evidence for more pentaquark states

2 September 2021

- Amplitude analysis using 800 $B_s^0 \rightarrow J/\psi pp$ decays
- Observe additional structure in J/ψp and J/ψp spectra
- Significance of 3.1σ to 3.7σ
 depending on J^P assignment
- Evidence for new P_c(4337)⁺ state consistent with another (cc uud) pentaquark
- Amplitude analysis using 1750 $\Xi_{b}^{-} \rightarrow J/\psi \wedge K^{-}$ decays
- Observe structure in J/ψΛ spectrum
- Evidence for new P_{cs}(4459)⁰ state with significance of 3.1 σ
- Consistent with (cc uds) pentaquark

Corfu Summer Institute

N. Harnew

30

arXiv:2108.04720

New doubly charmed tetraquark T_{cc}⁺

 Study D⁰ D⁰ π⁺ mass spectrum near D^{*+}D⁰ and D^{*0}D⁺ thresholds

 $\delta m \equiv m_{\mathrm{T_{cc}^+}} - (m_{\mathrm{D}^{*+}} + m_{\mathrm{D}^0})$

- Very narrow state in D⁰D⁰ π⁺ mass spectrum consistent with ccu d tetraquark, with significance 10σ . Manifestly exotic state.
- Very close to D*+D⁰ mass thresholds

 $\begin{array}{ll} \delta m_{\rm BW} & -273 \pm 61 \quad {\rm keV}/c^2 \\ \Gamma_{\rm BW} & 410 \pm 165 \, {\rm keV} \end{array}$

Possible evidence for molecular bound state, but jury still out.

Corfu Summer Institute

2 September 2021

N. Harnew

More observations of new tetraquark states

- $B^+ \rightarrow J/\psi \phi K^+$ sample
- Observe structure in J/ψK
- Observation of two new c c us tetraquark states Z_{cs}(4000)⁺ and Z_{cs}(4220)⁺
- Significance of I 5σ and 6σ
 respectively, I⁺ assignment

Phys. Rev. Lett. 127 (2021) 082001

- $B^+ \rightarrow J/\psi \phi K^+$ sample
- Observe structure in $J/\psi\phi$
- Observation of two new c c ss tetraquark states X(4630) and X(4685) as well as previously confirmed states
- Significance of 5.5σ and 15σ respectively

Corfu Summer Institute

The upgraded LHCb detector and outlook

Corfu Summer Institute

2 September 2021

N. Harnew

33

LHCb Upgrade planning

WE ARE HERE

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203+
		Run III						Run IV					Run V	
LS2						LS3					LS4			
	40 MHz RADE I	$L = 2 x 10^{33}$			LHCb Consolidate: UPGRADE Ib			$L = 2 x 10^{33} 50 fb^{-1}$			LHCb UPGRADE II		$L=1-2x \ 10^{34} \\ 300 \ fb^{-1}$	
ATLAS Phase	6 I Upgr	$L = 2 x 10^{34}$			ATLAS Phase II UPGRADE			HL-LHC $L = 5 \times 10^{34}$					HL-LHC $L = 5 \times 10^{34}$	
CMS Phase 1	I Upgr	300 fb ⁻¹			CMS Phase II UPGRADE								3000) fb ⁻¹
Bell e II				5 ab-1	$L = 6 \ x \ 10^{35}$			50 ab-1						
		¢												
Luminosity 4x10 ³² cm ⁻² s ⁻¹ ~1.1 visible interactions/crossing ~9 fb ⁻¹ collected				Luminosity 2x10 ³³ of ~5.5 visible interactions/crossin Up to 50 fb ⁻¹ collect				³³ cm ⁻² s ⁻¹ ssing llected			Luminosity 2x10 ³⁴ cm ⁻² s ⁻¹ ~55 visible interactions/crossing 300 fb ⁻¹ collected			

Corfu Summer Institute

Construction & Installation – Upgrade I

SciFi tracker

Corfu Summer Institute

RICH 2

UT stave

γ prospects : Run II \rightarrow Upgrade I

... and beyond 2030 : Upgrade II

Evolution of the Unitarity Triangle

Summary and Outlook

- The LHCb experiment has performed spectacularly well : $\rightarrow \sim 9 \text{ fb}^{-1}$ of recorded data up to $\sqrt{s} = 13 \text{ TeV}$
- So far all Unitarity Triangle measurements are consistent with the Standard Model
 New Physics is becoming constrained
 - \rightarrow New Physics is becoming constrained
- LHCb is a fantastic platform for spectroscopy measurements: many measurements were never foreseen in LHCb's original physics portfolio.
- Still much room for New Physics, but higher precision required
 - → preparing for LHCb Upgrades beyond 2022 and the decade afterwards!

Corfu Summer Institute