Probing leptogenesis with gravitational waves

Rome Samanta, MSCA-IF, FZU CEICO, Institute of Physics of the Czech Academy of Sciences, CZ

Research related to this presentation is supported by MSCA-Individual Fellowship IV FZU - CZ.02.2.69/0.0/0.0/20 079/0017754 and European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports.

Corfu, Sept, 2021

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Collab: Pasquale D. Bari, Satyabrata Datta, Ambar Ghosal, Sabir Ramazanov, Federico Urban

Subject of this talk:

How to probe **high scale** leptogenesis with gravitational waves.

High scales => beyond the reach of the collider experiments, therefore a shift of attention to GWs.

Typically the heavy neutrinos which are involved in generating lepton asymmetry in various ways, get masses with a dynamical $U(1)$ gauge symmetry breaking. \Rightarrow associated with cosmic strings

Heavy mass: M_R^{\sim} f(VEV_{U(1)})

Basic idea to reconcile light neutrino masses and baryogenesis via leptogenesis

Tests:

Direct: Colliders => low scale leptogenesis (Temp < TeV).

Examples (Not exhaustive):

ARS: (Heavy neutrino oscillation N_J <-> N_i) (Akhmedov, Rubakov, Smirnov, 1998).

Resonant-leptogenesis (Quassi-degenerate heavy neutrinos enhancement in the CP asymmetry) (Pifaltsis, Underwood, 2004).

Higgs decays: (Hambye, Teresi, 2016)

Flavour effects : Reduction of N1-washout, Still can not lower the scale significantly but opens up the way of indirect tests in neutrino experiments:

3D Parameter space : Leptogenesis in SO(10) inspired models-A Prototype

Best fit: $(\theta$ 23 ~ 48.6⁰, δ ~ 221⁰)

Di. Bari and **Samanta, 2020**

GWs as a probe of leptogenesis, e.g., PTAs

Millisecond pulsars (spins ~100 times a second) produce most stable pulses and are used by the PTAs

When a gravitational wave (a disturbance) passes between the earth and pulsar system, the time of arrival of the signal from the pulsars changes. This induces a change in frequency due to the gravitational wave.

Time residual:
$$
R(t) = -\int_0^t \frac{\delta v}{v} dt
$$

Pulsar-Timing-Arrays typically work with high amplitude GWs => Could be a Detector of High Scale Symmetry breaking theories, e.g., leptogenesis

Cosmic strings

Cosmological phase transition leads to spontaneous breaking of abelian symmetry This is associated with topological defect like cosmic strings (CS) . $(T.$ Kibble, J. Phys. A 9 (1976)).

They can form close loop and shrink via GW emission.

Still there are debates whether they loose energy via particle radiation or GW emission.

Recent numerical simulation based Nambu-Goto action shows that the dominant emission is GW if the broken symmetry is a local gauge symmetry. (Pillado et al, **PRD 2011**, T. Vachaspati et al , **PRD**, C. Ringeval et al **JCAP**).

Radiate energy at constant rate $\frac{dE}{dt} = -\Gamma G \mu^2$, Length dynamics $l(t) = \alpha t_i - \Gamma G \mu (t - t_i)$

G: Newton constant, μ : string tension (~**Square of symmetry breaking scale**), α : loop size (max: 0.1)

Gravitational waves power spectrum and loop number density

 $\Omega_{GW}(t_0,f)=\frac{f}{\rho_c}\frac{d\rho_{GW}}{df}=\sum_{k}\Omega_{GW}^{(k)}(t_0,f).$ Amplitude/energy density $\frac{d\rho_{GW}^{(k)}}{df} = \int_{t_a}^{t_0} \left[\frac{a(\tilde{t})}{a(t_0)} \right]^4 P_{GW}(\tilde{t}, f_k) \frac{dF}{dt} d\tilde{t},$ Differential energy density Power spectrum $P_{GW}(\tilde{t},f_k)=\frac{2kG\mu^2\Gamma_k}{f_k^2}n(\tilde{t},f_k)=\frac{2kG\mu^2\Gamma_k}{f^2\left[\frac{a(t_0)}{a(\tilde{t})}\right]^2}n\left(\tilde{t},\frac{2k}{f}\left[\frac{a(\tilde{t})}{a(t_0)}\right]\right).$ Amplitude/energy density $\Omega_{GW}^{(k)}(t_0,f)=\frac{2kG\mu^2\Gamma_k}{f\rho_c}\int_{t_{osc}}^{t_0}\left[\frac{a(\tilde{t})}{a(t_0)}\right]^5n\left(\tilde{t},\frac{2k}{f}\left[\frac{a(\tilde{t})}{a(t_0)}\right]\right)d\tilde{t}.$ Loop number density

Numerical simulation:
$$
n(\tilde{t}, l_k(\tilde{t})) = \frac{0.18}{\left[l_k(\tilde{t}) + \Gamma G \mu \tilde{t}\right]^{5/2} \tilde{t}^{3/2}}
$$

Cosmic archeology, GW spectral shapes and Leptogenesis

Fundamental mode $(k=1)$:

Murayama et al PRL(2020) **Samanta** et al INE(2020) **Samanta** et al JCAP(2021) **Samanta** et al 2108.08359 (2021)

Amplitude sensitivity **Amplitude** + spectral shape sensitivity Standard Cosmology (w=1/3) Early Matter domination (w=0) Kination (w=1) A spectral break $(f_{*,}T_{*})$ L^{3A} $A L G D$ 156 er 10^{15} GeV 1042 1042 $\frac{1}{16}$ $\frac{2}{12}$ $10^{2} + 1$ $100H²$ $100HZ$ $\frac{1}{2}$ (H_{Z}) $\frac{1}{2}$ (μ z)

Standard Leptogenesis **Leptogenesis from Black holes** Gravitational Leptogenesis

Some non-standard spectrums

Cosmic strings with inflation dilution Melting cosmic strings

Cui, Lewicki, Morrissey, PRL, 2020 **Emond, Ramazanov, Samanta (2108.05377)**

Cosmic archeology, GW spectral shapes and Leptogenesis G. Shore et al, JHEP 10 025, (2020) **Samanta** et al JHEP 12 (2020) 67

Neutrino-Gravitational waves complementarity

Large Yukawa coupling => test point is would be side ET **Samanta** et al 2108.08359 (2021)

$w = 0$, Ω_{GW} (f>f*)~ f^{-1} Baryogensis from ultra-light primordial black holes (Hawking radiation)

Inflation-> $U(1)$ breaking -> black hole formation-> Heavy neutrino emission (HR)-> baryogenesis $M_{\rm BH}$ [g]

$w = 0$, Ω_{GW} (f>f_{*})~ $f¹$ Baryogensis from ultra-light primordial black holes (Hawking radiation) **Samanta** et al JCAP(2021)

Inflation=> $U(1)$ breaking => black hole formation=> Heavy neutrino emission (HR)=> baryogenesis

Cosmic archeology, GW spectral shapes and Leptogenesis

Number of radiated particles:

$$
\frac{4\pi}{3} \frac{g_X}{g_{*B}} \left(\frac{M_{BH}}{M_{Pl}}\right)^2 \quad \text{for} \quad T_{BH} > M_X,
$$

$$
\frac{1}{48\pi} \frac{g_X}{g_{*B}} \left(\frac{M_{Pl}}{M_X}\right)^2 \quad \text{for} \quad T_{BH} < M_X.
$$

Only Ultra light PBHs (M_{BH} <13 g) can produce correct baryon asymmetry

Tension with NANOGrav data, with large loops

Future improvement

We did not consider black hole-string network that could provide spectral distortion.

(Samanta et al)

We trying to accommodate **Black** hole generated **Right Hand NeutrinO (Black-RHINO**s) super heavy dark matter in this framework that can be probed with a cosmic ray gravitational waves complementarity. **(Samanta, F. Urban et al)**

Summary

Gravitational Waves could be potential probe of High scale leptogenesis which otherwise cannot be probed e.g., in colliders.

Towards a clean probe, one may relate the spectral shapes of the GWs to leptogenesis.

I discussed to concrete models for two types of leptogenesis scenarios

Gravitational Leptogenesis (rising GW spectrum) Black hole leptogenesis (falling GW spectrum)