Sensitivity to dark matter production at future e⁺e⁻ colliders

Jan Kalinowski^a, Wojciech Kotlarski^b, Krzysztof Mekala^a, Pawel Sopicki^a, Aleksander Filip Żarnecki^a

FACULTY OF PHYSICS

^a Faculty of Physics, University of Warsaw ^b Institut für Kern- und Teilchenphysik, TU Dresden

Research supported by

NATIONAL SCIENCE CENTRE

Workshop on Standard Model and Beyond, Corfu'2021

September 4, 2021

DM production at e⁺e⁻ colliders

Introduction

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021 1 / 2

Dark Matter

Many hints for existence of Dark Matter (DM), but its nature is unknown. Many possible scenarios, wide range of masses and couplings to consider.

High energy e^+e^- machines offer many options for DM searches:

For more general picture see my presentation at SUSY'2021

Probing Dark Matter with e⁺e⁻

Mono-photon signature

The mono-photon signature is considered to be the most general way to look for DM particle production in future e^+e^- colliders.

DM can be pair produced in the e^+e^- collisions via exchange of a new mediator particle, which couples to both electrons (SM) and DM states

This process can be detected, if additional hard photon radiation from the initial state is observed in the detector...

A.F.Żarnecki (University of Warsaw)

`**∦**F₩

Outline

- 2 Colliders and Experiments
- 3 Simulating mono-photon events

Mono-photon results

- Heavy mediator approximation (ILD and CLICdp studies)
- Light mediator exchange

5 Conclusions

Colliders and Experiments

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021 4 / 2

Colliders

International Linear Collider

Technical Design (TDR) completed in 2013

arXiv:1306.6328

- superconducting accelerating cavities
- 250 500 GeV c.m.s. energy (baseline), 1 TeV upgrade possible
- footprint 31 km
- polarisation for both e^- and e^+ (80%/30%)

Colliders

Compact Linear Collider

Conceptual Design (CDR) presented in 2012

CERN-2012-007

- high gradient, two-beam acceleration scheme
- staged implementation plan with energy from 380 GeV to 3 TeV
- footprint of 11 to 50 km
- e⁻ polarisation (80%)

For details refer to arXiv:1812.07987

Running scenarios

Staged construction assumed for both ILC and CLIC. Results presented in this talk focus on the highest energy stages.

ILC

Total of 4000 fb^{-1} assumed at 500 GeV (H-20 scenario)

- $\bullet~2{\times}1600\,fb^{-1}$ for LR and RL beam polarisation combinations
- $2 \times 400 \text{ fb}^{-1}$ for RR and LL beam polarisation combinations

assuming polarisation of $\pm 80\%$ for electrons and $\pm 30\%$ for positrons

arXiv:1903.01629

CLIC

Total of $5000 \, \text{fb}^{-1}$ assumed at $3 \, \text{TeV}$

- 4000 fb^{-1} for negative electron beam polarisation
- 1000 fb^{-1} for positive electron beam polarisation

assuming polarisation of $\pm 80\%$ for electrons

Detector Requirement

"Particle Flow" concept:

High calorimeter granularity ⇒ single particle reconstruction/ID

Precise momentum measurement \Rightarrow best energy for charged particles \Rightarrow dominates jet energy resolution

High precision vertex detector \Rightarrow very efficient flavour tagging

Instrumentation down to smallest angles \Rightarrow hermecity, missing energy tagging

Detector Requirements same for ILC and CLIC

- Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$
- Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1 \text{ GeV}}{n \sin^{3/2} \Theta}$
- Jet energy resolution: $\sigma_E/E = 3 4\%$ (for highest jet energies)
- Hermecity: $\Theta_{min} = 5 \text{ mrad}$

Detailed detector concepts for ILC and CLIC:

Detector Requirements same for ILC and CLIC

- Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$
- Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1 \text{ GeV}}{n \sin^{3/2} \Theta}$
- Jet energy resolution: $\sigma_E/E = 3 4\%$ (for highest jet energies)
- Hermecity: $\Theta_{min} = 5 \text{ mrad}$

Detailed detector concepts for ILC and CLIC:

Simulating mono-photon events

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021 9 / 27

Simulating mono-photon events in $\operatorname{WHIZARD}$

For proper estimate of the mono-photon signature sensitivity consistent simulation of BSM processes and of the SM backgrounds is crucial.

"Irreducible" background comes from radiative neutrino pair-production

Detector acceptance & reconstruction efficiency

 \Rightarrow significant contribution from radiative Bhabha scattering

WHIZARD provides the ISR structure function option that includes all orders of soft and soft-collinear photons as well as up to the third order in high-energy collinear photons.

However, WHIZARD ISR photons are not ordinary final state photons: they represent all photons radiated in the event from a given lepton line.

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021

Simulating mono-photon events in WHIZARD

ISR structure function can not account for hard non-collinear photons \Rightarrow all "detectable" photons generated on Matrix Element level

Dedicated procedure developed to avoid double-counting of ISR and ME For details: J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486

Two variables, calculated separately for each emitted photon:

$$egin{array}{rcl} q_- &=& \sqrt{4E_0E_\gamma}\cdot\sin{ heta\gamma\over 2}\;, \ q_+ &=& \sqrt{4E_0E_\gamma}\cdot\cos{ heta\gamma\over 2}\;, \end{array}$$

are used to separate "soft ISR" emission region from the region described by ME calculations.

Validation of the procedure

WHIZARD predictions were compared to the results from the KKMC code for $e^+e^- \rightarrow \nu\bar{\nu} + N\gamma$ 3 TeV CLIC

 \Rightarrow very good agreement observed (both for shape and normalisation)

For more details:

J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021

Simplified DM model

UFO model covering most popular scenarios of DM pair-production Possible mediators: \Rightarrow Feynrules

- scalar
- pseudo-scalar
- vector
- pseudo-vector
- V-A coupling
- V+A coupling
- Possible DM candidates:
 - real or complex scalar
 - Majorana or Dirac fermion
 - real vector

Cross section for $e^+e^- \rightarrow \chi\chi$ for $M_{\chi} = 50 \text{ GeV}$ and $M_{Y} = 300 \text{ GeV}$

ISR rejection probability

Fraction of events generated by WHIZARD removed in merging procedure (ISR photons emitted in the phase-space region covered by ME)

ILC @ 500 GeV

CLIC @ 3 TeV

Tagging efficiency

based on $\operatorname{DelPHes}$ simulation

Mono-photons reconstructed only in a fraction of generated signal event

 $\sigma\left(e^{+}e^{-} \rightarrow \chi \; \chi \; \gamma_{_{\mathrm{tag}}}\right) \; = \; f_{\mathrm{mono-photon}} \cdot \sigma\left(e^{+}e^{-} \rightarrow \chi \; \chi \; (\gamma) \;\right)$

ILC @ 500 GeV

CLIC @ 3 TeV

Mono-photon results

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021 15 / 27

- Fw

arXiv:2103.06006

Heavy mediator approximation, generator level

Signature:

high energy, isolated photon no other "hard" activity in the detector

Highest sensitivity to DM production from the ratio of the photon energy distributions measured for the two electron beam polarisations

Dark Matter searches at 3 TeV CLIC

Heavy mediator approximation, generator level

Limits on the mono-photon cross section can be translated to the expected exclusion range in the DM-mediator mass space.

For a light WIMP mass the exclusion range extends up to 9 TeV

If significant excess of mono-photon events is observed, WIMP mass in a TeV range can be extracted with a 1% accuracy.

arXiv:2103.06006

arXiv:2001.03011

Heavy mediator (EFT limit), full simulation

Signature:

• single photon in the central region (high tracking efficiency)

Heavy mediator (EFT limit), full simulation

Signature:

- single photon in the central region (high tracking efficiency)
- no other activity in the detector
- veto in BeamCal (forward region)

"Irreducible" background from radiative neutrino pair-production events $e^+e^- \rightarrow \nu\nu + N\gamma$ dominates after selection and bg suppression cuts

A.F.Żarnecki (University of Warsaw)

18 / 27

arXiv:2001.03011

Heavy mediator (EFT limit), full simulation

arXiv:2001.03011

Different polarisation combinations help to reduce the systematics \Rightarrow significant improvement of mass scale limits

Sensitivity to the BSM mass scales up to $\Lambda \sim \! 3 \text{ TeV}$

 $\Lambda^2 = \frac{\mathsf{M}_Y^2}{|\mathsf{g}_{eeY}\mathsf{g}_{\chi\chi Y}|}$

Comparison of mass scale limits calculated in the EFT framework

New analysis approach

arXiv:2107.11194

DM production via light mediator exchange still not excluded for scenarios with very small mediator couplings to SM, $\Gamma_{SM} \ll \Gamma_{tot}$

"Experimental-like" approach ⇒ focus on cross section limits as a function of mediator mass and width

Detector response simulated in the DELPHES framework (fast simulation).

WHIZARD level selection:

- 1, 2 or 3 ME photons
- at least one ME photon with $p_T^{\gamma} > 2 \text{ GeV} \& 5^{\circ} < \theta^{\gamma} < 175^{\circ}$ (ILC 500 GeV)

$$p_T^{\gamma} > 5 \; GeV \; \& \; 7^\circ < heta^\gamma < 173^\circ \ (ext{CLIC 3 TeV})$$

 $\operatorname{Delphes}$ level selection:

 \bullet single photon with

 $\begin{array}{l} p_T^{\gamma} > 3 \ {\it GeV} \ \& \ |\eta^{\gamma}| < 2.8 \ {\rm (ILC)} \\ p_T^{\gamma} > 10 \ {\it GeV} \ \& \ |\eta^{\gamma}| < 2.6 \ {\rm (CLIC)} \end{array}$

• no other activity in the detector other reconstructed objects

Background vs Signal distributions

For mono-photon events, two variables fully describe event kinematics \Rightarrow use 2D distribution of (p_T^{γ}, η) to constrain DM production Background Signal

Cross section limitsfor radiative events (with tagged photon)Vector Mediator $\Gamma/M = 0.03$ with and without systematics

ILC @ 500 GeV

CLIC @ 3 TeV

Systematic effects reduced for on-shell production of narrow mediator

23 / 27

Cross section limits

for radiative events (with tagged photon)

Vector Mediator

 $\Gamma/M = 0.5$

with and without systematics

ILC @ 500 GeV

CLIC @ 3 TeV

Systematic effects reduced for on-shell production of narrow mediator

Cross section limits for total DM production cross section Corrected for probability of hard photon tagging!

Combined limits for Vector mediator

ILC @ 500 GeV

CLIC @ 3 TeV

Radiation suppressed for narrow mediator with $M_Y \sim \sqrt{s} \Rightarrow$ weaker limits

24 / 27

Cross section limits for total DM production cross section Corrected for probability of hard photon tagging!

Combined limits for mediators with $\Gamma/M = 0.03$

II C @ 500 GeV

CLIC @ 3 TeV

Radiation suppressed for narrow mediator with $M_Y \sim \sqrt{s} \Rightarrow$ weaker limits

Coupling limits

Combined limits for Vector mediator

Almost uniform sensitivity to mediator coupling g_{eeY} up to kinematic limit.

Coupling limits

ILC @ 500 GeV

Combined limits for mediators with $\Gamma/M = 0.03$

CLIC @ 3 TeV

Almost uniform sensitivity to mediator coupling g_{eeY} up to kinematic limit.

25 / 27

arXiv:2001.03011 arXiv:2107 11194

Comparison with ILD study

Effective mass scale limits:

$$\Lambda^2 = rac{\mathsf{M}_Y^2}{|\mathsf{g}_{eeY}\mathsf{g}_{\chi\chi Y}|}$$

Limits from fast simulation (points) vs limits from full simulation (lines)

Very good agreement between full simulation and fast simulation results! ⇒ reliable extrapolation to low mediator mass domain...

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

Conclusions

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

September 4, 2021 26 / 27

Dark matter searches with mono-photon signature at future e^+e^- colliders

Future e^+e^- colliders: many complementary options for DM searches.

Mono-photon signature: the most general way to look for DM production, EFT sensitivity extending to the $\mathcal{O}(10)$ TeV mass scales

New framework for mono-photon analysis developed focus on light mediator exchange and very small mediator couplings to SM

- $\mathcal{O}(1\,\mathrm{fb})$ limits on the radiative production $e^+e^- o \chi\chi\gamma_{\mathrm{tag}}$
- $\mathcal{O}(10 \,\text{fb})$ limits on the DM pair-production $e^+e^- \rightarrow \chi \chi(\gamma)$ except for the resonance region $M_Y \sim \sqrt{s}$
- $\mathcal{O}(10^{-3}-10^{-2})$ limits on the mediator coupling to electrons up to the kinematic limit $M_Y \leq \sqrt{s}$

For light mediators limits more stringent than those expected from direct resonance search in SM decay channels

A.F.Żarnecki (University of Warsaw)

DM production at e⁺e⁻ colliders

Simplified DM model

Dark matter particles, X_i , couple to the SM particles via an mediator, Y_j .

Each simplified scenario is characterized by one dark matter candidate and one mediator from the set listed below:

	particle	mass	spin	charge	self-conjugate	type
DM	X _R	m_{X_R}	0	0	yes	real scalar
	X _C	m _{Xc}	0	0	no	complex scalar
	X_M	m_{X_M}	$\frac{1}{2}$	0	yes	Majorana fermion
	X _D	m _{X_D}	$\frac{\overline{1}}{2}$	0	no	Dirac fermion
	X_V	m_{X_V}	1	0	yes	real vector
mediator	Y _R	m _{Y_R}	0	0	yes	real scalar
	Y_V	m _{Yc}	1	0	yes	real vector
	T _C	m _{Tc}	0	1	no	charged scalar

Systematic uncertainties

following ILD study: Phys. Rev. D 101, 075053 (2020), arXiv:2001.03011

Considered sources of uncertainties:

- Integrated luminosity uncertainty of 0.26% uncorrelated between polarisations
- Luminosity spectra shape uncertainty correlated between polarisations
- Uncertainty in neutrino background normalisation of 0.2% (th+exp) correlated between polarisations
- Uncertainty in Bhabha background normalisation of 1% (th+exp) correlated between polarisations
- Uncertainty on beam polarisation of 0.02–0.08% (ILC)/0.2% (CLIC) correlated for runs with same beam polarisation at ILC

 \Rightarrow nuisance parameters in the model fit (11 for ILC, 7 for CLIC)