FCC-ee Physics Potentials and Open Questions

Fifth FCC-Physics Workshop Liverpool/Zoom, Feb. 7, 2022

DESY (Hamburg) Humboldt University (Berlin)

(christophe.grojean@desy.de)

Why a Higgs Factory?

I want to start by reassuring my UK colleagues: the "PartyGate" emerged out of a total misunderstanding!

BJ didn't mean "Bring your booze" but rather "Bring your boozon" (when you spend too much time in Brussels, you tend to forget Shakespeare English!)

Let's remember why we need a Higgs/top/EW factory

Christophe Grojean

FCC-ee Physics

FCC workshop, Feb. 2022

Today HEP Status

- SM is now confirmed to high accuracy up to energies of (several) TeV
- Higgs boson discovered
- No direct evidence of new physics at colliders, maybe few indirect hints (B physics, $(g-2)_{\mu}$...)
- SM is *consistent* but *incomplete* in describing the whole Universe
- SM is only a low-energy approximation energy/effective field theory but we don't know the scale of New Physics
- We need experiments to probe the laws of Nature further and further

One century of tremendous successes brings fundamental questions: Why something rather than nothing? How did matter dominate over antimatter? What was the dynamics of the early Universe a nanosecond after the Big-Bang? Is there exo-matter, i.e. matter that can interact with us? Are the SM particles really all elementary?

Remarkably, we can build a machine to answers these questions!

Christophe Grojean

FCC workshop, Feb. 2022

Today HEP Status

- SM is now confirmed to high accuracy up to energies of (several) TeV
- Higgs boson discovered
- No direct evidence of new physics at colliders, maybe few indirect hints (B physics, $(g-2)_{\mu}$...)
- SM is *consistent* but *incomplete* in describing the whole Universe
- SM is only a low-energy approximation energy/effective field theory but we don't know the scale of New Physics
- We need experiments to probe the laws of Nature further and further

We need a broad, versatile and ambitious programme that 1. sharpen our knowledge of already discovered physics 2. push the frontiers of the unknown — FCC-ee+eh+hh combine these 2 aspects more PRECISION, more ENERGY for more SENSITIVITY to New Physics

FCC-ee Physics

FCC workshop, Feb. 2022

FCC-ee Run Plan

LEP data accumulated in first 3 mn. Then exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation)

Christophe Grojean

FCC-ee Physics

4

nter-of-mass	Integrated
ergies (GeV)	Luminosity (ab^{-1})
88 - 95	150
158-162	12
240	5
345-365	1.5

- LEP x 10⁵ LEP x 2.10³ **Never done** Never done **Never done**
- **E_{CM} errors:**
- <100 keV <300 keV 1 MeV << 1 MeV 2 MeV 6

FCC workshop, Feb. 2022

Christophe Grojean

FCC-ee Physics

Z-Factories are great Flavour Factories

0	Working point Lumi. /	IP $[10^{34} \text{ cm}^{-2}.\text{s}]$	$[5^{-1}]$ Total lu	mi. (2 IPs) Run	t
б Г ,	\overline{Z} first phase	100	26 ab	⁻¹ /year	$\overline{2}$
ew	Z second phase	200	52 ab	$^{-1}$ /year	2
rvi		0			_
Ne	Particle production (10^9)	$B^{0} B^{0} / \overline{B}^{0}$	$B^+ / B^- h$	$B^0_s \ / \ \overline{B}^0_s \ \ \Lambda_b \ / \ \overline{A}^0_s$	$\overline{\Lambda_b}$
С Д	Belle II	27.5	27.5	n/a n/a	
G	FCC-ee	1000	1000	250 250	
00 					
eil, F	Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr. $(50/ft)$	c)
nte	EW/H penguins				
M	$B^0 \rightarrow K^*(892)e^+e^-$	~ 2000	~ 150	~ 5000	
	$\int \frac{\mathcal{B}(B^{\circ} \to K^{+}(892)\tau^{+}\tau^{-})}{B \to u^{+}u^{-}}$	~ 10	-	- 500	
	$ \begin{array}{c} D_s \to \mu \ \mu \\ B^0 \to \mu^+ \mu^- \end{array} $	~ 5	-	~ 50	
N N	$\mathcal{B}(B_s \to \tau^+ \tau^-)$	-			
	Leptonic decays				
out of reach ($B^+ \to \mu^+ \nu_{mu}$	5%	—	_	
	$B^+ \to \tau^+ \nu_{tau}$	7%	—	_	
at LHCD/Belle	$\mathbf{S}_{c}^{+} \rightarrow \tau^{+} \nu_{tau}$	n/a	—	—	
	$B^0 \to J/\Psi K_S \ (\sigma_{\sin(2\phi_d)})$	$\sim 2.*10^6$ (0.008)	41500 (0.04)	$\sim 0.8 \cdot 10^6 \ (0.01)$	
	$B_s \to D_s^{\pm} K^+$ $B_s(B^0) \to J/\Psi \phi \ (\sigma_{\phi_s} \text{ rad})$	n/a n/a	6000 96000 (0.049)	$\sim 200000 \ \sim 2.10^6 \ (0.008)$	

Christophe Grojean

S. Monteil, FCC CDR overview

FCC-ee Physics

6

 150 ab^{-1}

 $\sim 35 \cdot 10^6 \ (0.006)$ $\sim 30 \cdot 10^6$ $16 \cdot 10^6 \ (0.003)$

3%

2%5%

FCC workshop, Feb. 2022

Probing New Physics w/ τ **Decays**

E.g.: (I) LFU tests in tau decays

$$\left|g_e^{(\tau)}/g_e^{(\mu)}\right|^2 \equiv \frac{\Gamma(\tau \to e\nu\bar{\nu})}{\Gamma(\mu \to e\nu\bar{\nu})} \left[\frac{\Gamma_{\rm SM}(\tau \to e\nu\bar{\nu})}{\Gamma_{\rm SM}(\mu \to e\nu\bar{\nu})}\right]^{-1}$$

sensitivity good enough to probe BSM models "explaining" current flavour R_K anomalies $(b \rightarrow c \tau v)$

• NP expectation from current anomalies in the range $(0.2 - 4.0) \times 10^{-3}$

- SM theory precision $\sim 10^{-5}$
- Belle-II can (at most) reach an error $\sim 0.3 \times 10^{-3}$

• FCC-ee could go below 10⁻⁴ !

Christophe Grojean

FCC-ee Physics

Allwicher, Isidori, Semilovic '21

	A. Pich '13
$_{\to\pi\mu}/\Gamma_{K\to\pi e}$	$\Gamma_{W \to \mu} / \Gamma_{W \to e}$
0010(25)	0.996 (10)
$V_{\to \tau}/\Gamma_{W \to \mu}$	
.034 (13)	

"Model-independent" effect linked to present anomalies

Unique opportunity !

FCC workshop, Feb. 2022

Discovery Potential Beyond LHC

Precisely measured EW and Higgs observables are sensitive to heavy New Physics

Examples of improved sensitivity wrt direct reach @ HL-LHC: SUSY

Fan, Reece, Wang '14

ESU Physics BB '19

Christophe Grojean

FCC-ee Physics

8

FCC workshop, Feb. 2022

ESU Physics BB '19

FCC workshop, Feb. 2022

Direct Searches for Light New Physics

LLP searches with displaced vertices

e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks

CLIC₃₈₀ $L = 0.5 \, \text{ab}^{-1} \, \cdot 1$

Astro/Cosmo \rightarrow long-lived ALPs ciated production Colliders \rightarrow short-lives ALPs MeV+

FCC workshop, Feb. 2022

Search for VRH

Direct observation in Z decays from LH-RH mixing

Important to understand 1. how neutrinos acquired mass 2. if lepton number is conserved

ESU Physics BB '19

FCC-ee Physics

11

Christophe Grojean

FCC workshop, Feb. 2022

Exotics/Long Lived Particles

The Higgs could be a good portal to Dark Sector — rich exotic signatures —

Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Dec
h ightarrow 2 —	$h ightarrow E_{ m T}$	$h \rightarrow 2 \rightarrow 4$	h
h ightarrow 2 ightarrow 3	$h \rightarrow \gamma + \not\!\!\!E_T$		h -
	$h ightarrow (b\bar{b}) + E_{ m T}$		h -
\langle	$h \rightarrow (jj) + \not\!$		$h \rightarrow$
\rightarrow	$h ightarrow (au^+ au^-) + E_{ m T}$		h ightarrow
\backslash	$h ightarrow (\gamma \gamma) + E_{ m T}$		h
	$h \rightarrow (\ell^+ \ell^-) + E_T$		h
$h \rightarrow 2 \rightarrow 3 \rightarrow 4$	$h \rightarrow (bb) + E_{\mathrm{T}}$		h -
\langle	$h \rightarrow (jj) + \not\!$		$h \rightarrow$
$\langle \rangle$	$h \rightarrow (\tau^+ \tau^-) + E_{\mathrm{T}}$		$h \rightarrow$
\rightarrow	$h \rightarrow (\gamma \gamma) + \not\!$		h ightarrow 0
\backslash	$h \rightarrow (\ell^+ \ell^-) + \not\!\!{E}_{\mathrm{T}}$		h
$L \rightarrow 0 \rightarrow (1 \pm 0)$	$h \rightarrow (\mu^+ \mu^-) + \mu_T$		h
$n \rightarrow 2 \rightarrow (1+3)$	$h \rightarrow bb + p_T$	$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h \to (\ell)$
\leftarrow	$h \rightarrow jj + p_{\rm T}$ $h \rightarrow \pi^+ \pi^- + p_{\rm T}$		$h \to (\ell$
\longrightarrow	$h \rightarrow \gamma \gamma + E_{T}$	$h \rightarrow 2 \rightarrow 6$	$h ightarrow \ell$
\backslash	$h \rightarrow \ell^+ \ell^- + E_{\rm T}$	\leftarrow	$h o \ell$
	10-70 C 1401		

Christophe Grojean

FCC-ee Physics

12

Z. Liu @ CEPC 2020

LHC's strength Hard at LHC due to missing energy Hard at LHC due to hadronic background

Lepton colliders' strength

FCC workshop, Feb. 2022

Exotics/Long Lived Particles

95% C.L. upper limit on selected Higgs Exotic Decay BR

Quantum Gravity?

Supersymmetry?

FCC-ee Physics

Z. Liu @ CEPC 2020

■ HL-LHC CEPC ILC(H20) FCC-ee (bb)(TT) (ij)_(YY) (TT)(TT) (YY)(YY)

FCC workshop, Feb. 2022

Higgs @ FCC-ee: Pivot between LHC and FCC-hh

Christophe Grojean

ECFA Higgs study group '19

Kappa-2, May 2019

- CLIC₃₈₀
- ILC₅₀₀+ILC₃₅₀+ILC₂₅₀
- ILC_{250}
- LHeC ($|\kappa_V| \leq 1$)
- HE-LHC ($|\kappa_V| \leq 1$)
- HL-LHC ($|\kappa_V| \leq 1$)

assumption needed for the fit to close at hadron machines

FCC workshop, Feb. 2022

Higgs @ FCC-ee: Pivot between LHC and FCC-hh

include HL-LHC yes measured BR_{unt} measured BR_{inv} kappa-3 Scenario

Christophe Grojean

Important **synergy** HL-LHC — low energy lepton colliders 1. Top/Charm Yukawa 2. Statistically limited channels: yy, mumu, Zy FCC workshop, Feb. 2022

Kappa-3, May 2019

ECFA Higgs study group '19

Higgs @ FCC-ee: Pivot between LHC and FCC-hh

3

FCC-hh without ee could still bound BR_{inv}

but it could say nothing

Jorge de Blas INFN - University of Padov

FCC workshop, Feb. 2022

Access to s Yukawa

Improved jet flavour tagging opens up new opportunities

BR(H \rightarrow ss) = BR (H \rightarrow cc) (m_c/m_c)² ~ 2.3 10⁻⁴

FCCee: σ_{7H}~200fb, L ~ 5 ab⁻¹ (2 IP): **~1M ZH** [600k H \rightarrow bb, 100k H \rightarrow gg, 30k H \rightarrow cc, **200 H** \rightarrow ss]

Use Loose WP:

[s-tag: 90%, g-mist: 10%, c-mist: 1%, b-mist: 0.4%

- Scenario 1: $Z(\rightarrow all)H$:

 $N_{ss} = 150, N_{b} = 1000$ (neglecting $ee \rightarrow VV$ backgrounds)

δ(σxBR)/σxBR (%) ~ 21 % (~ 5σ) [no systematics, only higgs backgrounds, no combinatorics]

- Scenario 2: $Z(\rightarrow vv)H$:

 $N_{sc} = 30, N_{b} = 200$ (neglecting ee \rightarrow vvqq and ee \rightarrow qq, can be important given large q \rightarrow s fake prob.)

 $\delta(\sigma_x BR)/\sigma_x BR$ (%) ~ 49% (~ 2 σ) [no systematics]

Christophe Grojean

FCC-ee Physics 16

Selvaggi @ FCC week 2021

Back-of-the envelope estimates

THOROUGH **STUDIES NEEDED**

FCC workshop, Feb. 2022

Christophe Grojean

FCC-ee Physics

17

FCC workshop, Feb. 2022

Christophe Grojean

FCC-ee Physics

17

Polyatomic EDM

New physics Laser cooling

Polarization Co-magnetometers

from slide by N. Hutz

Time scale of 5-10 years:

 $|d_e| \leq 10^{-32} e \,\mathrm{cm}$

1-loop, PeV scale sensitivity M. Reece @ Pheno2020 Snowmass LOI

FCC workshop, Feb. 2022

CP Violation in Higgs Sector

Searching for source of CPV that can trigger matter-antimatter imbalance SM: only 1 CPV invariant (Jarlskog) BSM: 707 new sources of CPV at leading order

CPV is a Collective effect: CPV is accidentally small in the SM

SM:
$$J_4 = \operatorname{Im}_{\mathcal{O}_{uH}} \left(\sum_{\substack{C_{uH,i} \\ \Lambda^2}} [Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}]^3 \right) \sim \lambda^{36} \sim 10^{-24}$$

 $BSM: \qquad L_1^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}\right] \qquad L_2^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_u\right] \qquad L_3^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_d\right] \\ L_4^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_uX_d\right] \qquad L_5^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_u\right] \qquad L_6^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_d\right] \\ L_6^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_d\right] \qquad L_6^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_d\right] \qquad L_6^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_d\right]$ $L_7^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_d^2X_u^2\right] \quad L_8^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_uX_d^2X_u^2\right] \quad L_9^{uH} = \operatorname{Im}\operatorname{Tr}\left[C_{uH}Y_u^{\dagger}X_dX_u^2X_d^2\right]$

all suppressed by $v^2/(New Physics scale)^2$ but no big collective suppression

sizes of CPV sources depend on flavour symmetry of BSM interactions

18

 $C_{\mu H}$

	Generic	MFV
Rank 1	${\cal O}(\lambda^0)$	${\cal O}(\lambda^0)$
Rank 2	${\cal O}(\lambda^4)$	$\mathcal{O}(\lambda^8)$
Rank 3	$\mathcal{O}(\lambda^8)$	$\mathcal{O}(\lambda^{12})$

Bonnefoy et al: arXiv:2112.03889

FCC workshop, Feb. 2022

CP Violation in Higgs Sector

Searching for source of CPV that can trigger matter-antimatter imbalance SM: only 1 CPV invariant (Jarlskog) BSM: 707 new sources of CPV at leading order

continue the exploration, especially in the tau sector —

Christophe Grojean

FCC-ee Physics

EFT Cut-off scales $\Lambda/\sqrt{X_{R,I}}$

maximally allowed T (collider, EDM) Minimal scales τ, b: 1 - 3 TeV; t: 1 TeV (LHC), 9 TeV (EDM) μ: 10 – 12 TeV

minimally required T₁ (EWBG) Maximal scales $\Lambda/\sqrt{X_I^{\tau}} \lesssim 18 \text{ TeV} (0.01/T_I^{\tau})^{1/2}$

FCC workshop, Feb. 2022

Physics Performance On-Going Works

- Common software framework is becoming the "standard" for analyses
- First usage of Full Simulation in analyses will be presented this week
- Several efforts that have started recently will presented for the first time; status reports on other analyses will be given as well.

Join the efforts! Volunteers welcome!

Christophe Grojean

FCC-ee Physics

FCC workshop, Feb. 2022

Physics Performance On-Going Works Tau physics

Flavour

			_	
Measurement	Constraining	Measurement		
Bs to Ds K	Many things Vertexing,	Tau Lifetime	,	
3c -> tau nu	Flight distance resolution	Tau mass	-	
	(vertexing)	Tau leptonic BR	E	
B -> K* tau tau	Flight distance resolution (vertexing)	Tau polarisation and exclusive BR		
Modes with pi0's	EM resolution	Lepton Flavor Violation in Z and tau decays		

BSM Direct searches

HNL	displaced verticesspecific tracking
ALPS: ee $\rightarrow a\gamma \rightarrow 3\gamma$	 Photon resolution separation of close-by photons displaced γ vertices
ALPS: $\gamma\gamma \rightarrow \gamma \rightarrow \gamma\gamma$	Photon resolution
Dark Photons $ee \rightarrow \gamma \bar{\gamma}$	Photon resolution

Christophe Grojean

FCC-ee Physics

20

Tau

Constraining

uction and alignement of vertex detector

nomentum scale (in multi-track collimated nment)

n and muon ID

, Pi0, neutrals, K/pi separation

momentum scale

D in the IDEA calo [Roma]

FCC workshop, Feb. 2022

Physics Performance On-Going Works

EW measurements at the Z peak Z pole

EW measurements at WW

Measurement Constraining	Measurement
Total width of the Z (see next slide) Track momentum (and angular)	
stability	Coupling of Z to nu_e (also, at the Z peak: invisible ALP, dark γ)
Rb, Rc, AFB of heavy quarksFlavour tagging, acceptance,	
QCD corrections	M _w from WW -> had, semi-lep
alphaS measurement Z -> jets	(d)σ(WW) for M _w , TGCs
Ratio Rl Geometrical acceptance for	
lepton pairs	Vcb via W -> cb
AFB (muons) and $\alpha(QED)$ EW corrections and control of	
IFI (initial-final state radiation	W leptonic BRs
Interference)	Meas of √s via radiative return
Luminosity from diphoton events ; e/gamma separation, gamma	

FCC-ee Physics

FCC workshop, Feb. 2022

Physics Performance On-GoingaMontes

Higgs Physics

N#		
Measurement	Constraining	
Higgs boson coupling to c quark	Flavour tagging, vertexing	
σ(ZH) and mH, Z →leptons (Mrecoil); New scalars in Z + S	Lepton momentum & energy resolution	
σ(ZH) and mH, Z → hadrons ; BR(Higgs invisible)	hadronic mass and hadronic recoil-mass resolution ;	
	Maybe b-tagging	
Γ(H) in ZH, H → ZZ*	Lepton ID efficiencies; jet clustering algorithms, jet	
	directions, kinematic fits	
Higgs boson mass in all exclusive final states (hadronic, taus, etc)	b-tagging eff and purity, jet angular resolution, jet reco, kin fits	
	1	

Christophe Grojean

FCC-ee Physics

Higgs Physics

FCC workshop, Feb. 2022

Summary of Physics Potential

		e ⁺ e ⁻ collisions						рр	collisions	100001000	
\sqrt{s} \rightarrow Physics \downarrow	mz	2m _W	HZ max. 240-250 GeV	2M _{top} 340-380 GeV	500 GeV	1.5 TeV	3 TeV	28 TeV 37 TeV 48 TeV	100 TeV	Leading Physics Questions	
Precision EW (Z, W, top)	Transverse polarization	Transverse polarization		m _W , α _S						Existence of more SM- Interacting particles	
$QCD (\alpha_{s})$ $QED (\alpha_{QED})$	5×10 ¹² Z	3×10 ⁸ W	105 H→gg							Fundamental constants and tests of QED/QCD	
Model-independent Higgs couplings	ee √s	e → H 5 = m _H	1.2×10 ⁶ HZ ar at two	nd 75k WW→H energies					<1% precision (*)	Test Higgs nature	
Higgs rare decays									<1% precision (*)	Portal to new physics	
Higgs invisible decays									10 ⁻⁴ BR sensitivity	Portal to dark matter	
Higgs self-coupling			3 to 50 from lo to Higgs cr	oop corrections oss sections					5% (HH prod) (*)	Key to EWSB	
Flavours (b, τ)	5×10 ¹² Z									Portal to new physics Test of symmetries	
RH v's, Feebly interacting particles	5×10 ¹² Z								10 ¹¹ W	Direct NP discovery At low couplings	
Direct search at high scales					M _x <250GeV Small ∆M	M _x <750GeV Small ∆M	M _x <1.5TeV Small ∆M		Up to 40 TeV	Direct NP discovery At high mass	
Precision EW at high energy							Y		W, Z	Indirect Sensitivity to Nearby new physics	
Quark-gluon plasma Physics w/ injectors										QCD at origins	

Green = Unique to FCC; Blue = Best with FCC; (*) = if FCC-hh is combined with FCC-ee; Pink = Best with other colliders;

Christophe Grojean

FCC-ee Physics

FCC-ee note, 1906.02693

FCC workshop, Feb. 2022

Conclusions

A circular "Higgs factory" like FCC-ee has a rich potential:

* Direct and indirect sensitivity to New Physics

* Refinements in our understanding of Nature (EW phase transition, naturalness...)

And it is an essential part of an **integrated** programme to probe the energy frontier

Data always brings new understanding. We need facts and data: Physics is a natural science! We have profound questions and we need create opportunities to answer them. FCC-ee will for sure contribute.

> High-Energy Physics provides tools to others fields (medicine/climate/energy) It remains a good investment for the future of mankind

Let's produce our boozons (and fermions) and have a party (afterwards)

Christophe Grojean

FCC-ee Physics

FCC workshop, Feb. 2022

Acknowledgement

This project is supported from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

FCC-ee Physics

FCC workshop, Feb. 2022