FCC-eh Physics Potential

Daniel Britzger FCC Physics Workshop Feb. 2022, Liverpool

FCC-eh

Dedicated electron-ring attached to the FCC-hh

Energy recovery linac $E_e = 60 \text{ GeV}$ $\sqrt{s} \sim 3.5 \text{ TeV}$

High Luminosity of about 3 ab⁻¹

Concurrent operation with FCC-hh

FCC-eh underground structures

The FCC-eh energy recovery linac

Energy-recovery linacs (ERL) → Well-proven accelerator concept

A new facility comprising all essential features ?
→ high-current & high-energy & multi-pass
→ optimised cavities & cryo-modules and a beam for collider experiments

PERLE at Orsay: ERL demonstrator facility for FCC-eh/LHeC needs 20mA, 802 MHz SRF, 3 turns

Deep-inelastic scattering

Deep-inelastic electron-proton scattering mediated in spacelike regime, by γ , γZ , Z or W-boson exchange

Deep-inelastic scattering

Cleanest High Resolution Microscope

- \rightarrow Precision QCD and matter
- → QCD Discoveries

Empowering the FCC-hh Search Programme

Transformation of FCC-hh into the desired Higgs and discovery machine

Unique Facility for Nuclear Physics

Complementary Higgs Programme

Top and EW Physics

High-luminosity Energy Frontier DIS

Precision QCD

Strong coupling constant $\alpha_{\rm s}$ is one of the least known fundamental constants

- \rightarrow Jet production in Breit frame O(α_s)
- → Proton internal dynamics (scaling)
- → Jet substructure and formation of hadrons

 $\alpha_s(M_Z)$ from inclusive DIS

 $\Delta \alpha_{\rm s}(M_{\rm Z})$ (incl. DIS) = $\pm 0.00019_{\rm (exp+PDF)}$

 α_s seen as a benchmark parameter \rightarrow A factor 10 more precise QCD measurements than nowadays possible

Proton structure measurements

Color-neutral particle probes the interior of the proton

→ Parton distribution functions (PDFs) of the proton are determined with unprecedented precision

Full determination of all parton-flavors from heavy quark and jet cross section measurements

3D structure of the proton (TMDs, GPDs) from elastic diffractive and deeply-virtual Compton scattering

Low-x: a largely unexplored region with exciting QCD effects

eA scattering at FCC-eh will determine nuclear modification factor (Pb/p) many orders more precise and down to x~10⁻⁶ → gluon (anit-)shadowing, nuclear entanglement

Improvement for parton luminosities at FCC-hh

PDFs are crucial ingredients to fully achieve the physics goals of FCC-hh (Higgs, high-mass,etc...)

The FCC-eh measurements will provide the most precise – and independent – constraints on PDFs

Note: at the level of precision of FCC-eh PDFs many new effects will be investigated

→ Small-x behaviour, high-x, mass-effects, non-perturbative effects, quantumenganglement, shadowing,...

 \rightarrow QCD evolution (DGLAP) from 1GeV up to ~50000 GeV

Parton structure, forward physics and eA at FCC-eh K. Piotrzkowski, Wed 14:15

Electroweak physics

Electroweak physics of 1st gen. quarks

$$egin{aligned} g_V^f &= \sqrt{
ho_{ ext{NC},f}} \left(I_{ ext{L},f}^3 - 2 Q_f \kappa_{ ext{NC},f} \, \sin^2\! heta_{ ext{W}}
ight) \ g_A^f &= \sqrt{
ho_{ ext{NC},f}} \, I_{ ext{L},f}^3 \end{aligned}$$

 $g_{\scriptscriptstyle V}$ and $g_{\scriptscriptstyle A}$ largely unaccessible in ee

 \rightarrow PDFs are not a limiting factor for EW physics

Unique measurement of 'running' at high scales

12

Weak couplings of the W-boson

EW theory provides precise predictions for charged currents, but CC processes are poorly measured \rightarrow neutrino escapes undetected

In DIS, the kinematics of charged currents are completely measured from final state and incoming electron

 \rightarrow Weak couplings of the W-boson are precisely measured – even their scale dependence

Top quark production in ep

CC DIS single-top quark production

NC (yp) top-quark pair production

LHeC σ~ 1.9pb FCC-eh σ~15.3pb

LHeC $\sigma \sim 0.05 \text{pb}$ FCC-eh $\sigma \sim 1.14 \text{pb}$

Other channels are: top-quark pair in DIS (~0.6pb), single-top in DIS and γp

$|V_{tb}|$ in CC single-top production

Direct measurement of $|V_{tb}|$

FCC

$$W \xrightarrow{\overline{t}} V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Cut-based pseudo-analysis in hadronic channel incl. backgrounds

- \rightarrow Estimated precision on V_{tb} below 1% precision
- → Limits on anomalous Wtb couplings: < 0.01

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Many further subjects in top-quark sector: top-quark polarization, top-PDFs, CP-properties of *ttH* couplings, top-charge, anomalous tt-X couplings, ...

BSM and Top-quark

Physics with FCC-eh O. Fischer. Thu 15:25

Top quark branching fractions

Top quark branching fractions

- Searches for FCNC
- 95% C.L.

Compare future experiments

- FCC-ee
- FCC-hh
- FCC-eh
- LHeC
- HL-LHC (3000 fb-1)
- ILC/CLIC
- + various theory predictions

pp, ep and ee

- LHeC complements HL-LHC in '30s
- FCC ee/hh/eh compete

Higgs physics

Charged current

Neutral current

Higgs production through WW-fusion

Higgs production through ZZ-fusion

Higgs physics

Higgs-production cross section ~1000fb Sensitivity to the decay channels bb, WW, gg, $\tau\tau$, cc, ZZ, ($\gamma\gamma$)

$ep \twoheadrightarrow H + v + X \twoheadrightarrow bb + v + X$

Full analyses of simulated data with full or fast detector \rightarrow simulations show great signal over background ratio

Signal strength in dominant decay channels (CC and NC)

HWW and HZZ signal strengths measured at once in DIS via selection of the final state (e or v)

Higgs physics – interpretation in *k* framework

Higgs couplings in κ framework \rightarrow Possible future *ep*-facilities

High sensitivity in all six decay channels \rightarrow Significant improvement with increasing \sqrt{s}

Interplay between pp and ep

Complementarity between pp and ep

• ep: bb, WW, ZZ, cc

SMEFT fit results after FCC era

Higgs and Electroweak ep Physics at FCC-eh Ch. Schwanenberger, Tue 8:30

Significant reductions for *Hcc* and *Hbb*

eh contributes to the *HWW* and *HZZ* couplings and resolves their correlation.

BSM and searches

Leptoquarks

- SUSY: R-parity violating & R-parity conserving (prompt Higgsinos)
- BSM Higgs: charged higgs....
- anomalous couplings (VVV,VVVV)
- Contact-interactions,
- Compositness,
- high-precision EW,
- sterile neutrinos,

Lepton flavor violating processes

BSM and Top-quark

Physics with FCC-eh O. Fischer. Thu 15:25

Summary

The FCC-eh is operated concurrently with FCC-hh and has rich and versatile physics goals \rightarrow impossible to adequately cover all physics subjects in a single talk

Primarily, ep experiments are QCD precision experiments

- \rightarrow unique physics case from lowest scales up to the TeV regime
- \rightarrow Precision QCD, structure of hadrons, hot & dense QCD phenomena

High-luminosity beam from the ERL adds exciting physics subjects

- \rightarrow Higgs-programme with complementary channels than pp
- \rightarrow Electroweak physics with complementarity to ee due to its scale dependence
- \rightarrow Top-quark physics with clean single-top processes
- \rightarrow Exciting and unique BSM programme

The *ep* measurements support the *pp* programme

- \rightarrow through precision PDFs, fragmentation functions, a_s , parton shower constraints
- \rightarrow indispensable ingredients for precision *pp* predictions

Higgs and Electroweak ep Physics at FCC-eh Ch. Schwanenberger Tue 8:30 Parton structure, forward physics and *eA* at FCC-eh K. Piotrzkowski Wed 14:15 FCC-eh accelerator / IR and Common *hh* Detector K. Andre Thu 8:30

Backup

Energy-frontier ep physics in the '30 – the LHeC

LHeC – ep data in 2030s

- ERL electron ring attached to HL-LHC
- Similar concept than FCC-eh but realisable much earlier
- $E_e = 50 \text{ GeV}, L \sim 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LHeC

- √s ~ 1.3 TeV
- Electron and positron data
- Up to 1 ab-1 integrated luminosity
- (Symmetric) detector may be shared with ALICE3/HI

→ *Relocatable*: ERL components can be relocated from HL-LHC to FCC-hh

Deep-inelastic electron-proton scattering

Deep-inelastic electron-proton scattering mediated in spacelike regime, by γ, γZ, Z or W-boson exchange

 \rightarrow Ideal QCD and Electroweak laboratory and complementary to e⁺e⁻ or pp

Heavy ion physics – eA and AA physics

eA unexplored kinematic region

Nuclear structure

FCC

- Complementary with HL-LHC (if factorization holds to such low-x?)
- LHeC much cleaner measurements, full flavor sensitivity, TMDs, GPDs, ...

pp and AA collisions

Recently updated accelerator-optics define the IP's of eA, AA and pp runningmode at the same vertex point

Full physics programme of *pp* and AA collision thinkable

 \rightarrow 'only' subject to beam-time discussion

Cross-calibration of measurements in ep, pp, AA (syst. uncertianties, normalised measurements)

Benefit from excellently calibrated DISdetector

FCC Physics Potential

