Naturalness

Michael Geller (TAU)

FCC physics workshop 2022

Intro

 For decades, Higgs naturalness has been a key motivation for theoretical and experimental progress in high energy physics.

Naturalness is severely strained by the LHC data.

Where do we go from here?

What is Naturalness?

- The SM is a low energy limit of a more fundamental theory (EFT).
- At its core, naturalness is about the connection between the EFT and the UV-completion.
- EFT: natural theories, physical observables are compatible with order estimates for the loop corrections.
- UV completion: No "mysterious" fine-tuning of parameters are required.

Higgs Naturalness

 In the SM: The Higgs mass parameter is sensitive to quantum corrections.

EFT naturalness

$$m_H^2 = m_{H0}^2 + \frac{\lambda_t^2}{16\pi^2} \Lambda^2$$

 In any UV completion we know: if the scale of new physics is high, a mysterious tuning of parameters is required.

Natural Theories

- In past decades, "natural" extensions of the SM were studied extensively:
 - SUSY
 - Composite Higgs
- Symmetries are introduced ensuring cancelation of the loop contributions.
- New particles symmetry partners, notably "top partners".
- The unnaturalness of the SM EFT: "Tuning" scales as m_H^2/m_{tp}^2 .

Naturalness vs Data

Scalar **Top Partners** (Stops):

Fermionic Top Partners (VLQs):

What may be wrong?

- Could still be around the corner!
- Naturalness holds an implicit assumption that the LHC probes the ground state of the theory.

Doesn't have to be true! We might well be in a metastable minimum

among many others

 Or even not a minimum, but a flat slope

Anthropics or 'Dead Naturalness'

- Assuming a landscape is often posed as a dead-end.
- But, it doesn't have to be. It's just physics have to study mechanisms, models, dynamics, predictions.
- Even throwing away naturalness may lead to radical implications - see Amin et. al. 1802.00444

Cosmological Dynamics

- New ideas have been proposed
- In these ideas the physical Higgs mass back-reacts on some cosmic dynamics
- The backreaction predicts **new physics**, but not where naive naturalness expects them.
- Can be broadly classified according to their mechanisms:
 - 1. Classical Rolling
 - 2. Quantum diffusion and inflationary equilibrium
 - 3. Landscape selection

Rolling Dynamics

Graham et. al. 1504.0755

- Relaxion: the physical Higgs mass back-reacts on the rolling of a scalar field during inflation - by generating "wiggles".
- The scalar field couples to the Higgs mass and "scans" it.
- The rolling stops in the first minimum - very close to the crossover.

Quantum Diffusion

Geller et. al. 1809.07338 Giudice et. al. 2105.08617

- Self Organized Criticality (see Giudice et. al. 2105.08617)
 - Predictive statistical behavior during (eternal) inflation.
 - Drives light fields to critical "unnatural" points

$$rac{lpha}{2}rac{\partial^2 P}{\partial arphi^2} + rac{\partial (\omega' P)}{\partial arphi} + eta \omega P = rac{\partial P}{\partial T}$$

Landscape Selection

Csaki et. al. 2007.14396

D'Agnolo and Teresi 2109.13249

D'Agnolo and Teresi 2106.04591

Arkani-Hamed et. al. 2012.04652

- Assume a landscape of Higgs masses.
- Instead of speculating that life selects the Higgs mass create a selection mechanism.

• Possible Selection Mechanism: No expansion/long-lived universe if $|m_H^2| > EW^2$

Other ideas:
Connect the Higgs selection to the CC selection.

Landscape Selection

Csaki et. al. 2007.14396

The Model:

The position of the IR brane: dilaton

$$\chi \sim \frac{1}{R'}$$

Predictions

- Higgs backreaction requires new d.o.f close or lighter than the Higgs mass.
- These new particles are potentially discoverable at future colliders.
- Other implications include: luminosity and precision frontier, cosmology, astrophysics.

Examples - FCC physics

Light Dilaton in Crunching Naturalness

Other Examples

Discussion

- Just started thinking beyond naive naturalness.
- New ideas, but still major theoretical problems:
 - Models are still quite ugly flat scalars, little-hierarchy problems.
 - Require understanding eternal inflation.
 - Dynamics in "toy landscapes" don't have to be representative of dynamics in the string landscape. Don't have a "landscape decoupling limit".
- Have clear predictions don't have to wait!

Thank you! Stay Safe!